Skip to main content

Classification, Regression and Segmentation Directly from K-Space in Cardiac MRI

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15241))

Included in the following conference series:

  • 267 Accesses

Abstract

Cardiac Magnetic Resonance Imaging (CMR) is the gold standard for diagnosing cardiovascular diseases. Clinical diagnoses predominantly rely on magnitude-only Digital Imaging and Communications in Medicine (DICOM) images, omitting crucial phase information that might provide additional diagnostic benefits. In contrast, k-space is complex-valued and encompasses both magnitude and phase information, while humans cannot directly perceive. In this work, we propose KMAE, a Transformer-based model specifically designed to process k-space data directly, eliminating conventional intermediary conversion steps to the image domain. KMAE can handle critical cardiac disease classification, relevant phenotype regression, and cardiac morphology segmentation tasks. We utilize this model to investigate the potential of k-space-based diagnosis in cardiac MRI. Notably, this model achieves competitive classification and regression performance compared to image-domain methods e.g. Masked Autoencoders (MAEs) and delivers satisfactory segmentation performance with a myocardium dice score of 0.884. Last but not least, our model exhibits robust performance with consistent results even when the k-space is 8\(\times \) undersampled. We encourage the MR community to explore the untapped potential of k-space and pursue end-to-end, automated diagnosis with reduced human intervention. Codes are available at https://github.com/ruochenli99/KMAE_cardiac.

R. Li and J. Pan—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad, R., Xue, H., Giri, S., Ding, Y., Craft, J., Simonetti, O.P.: Variable density incoherent spatiotemporal acquisition (VISTA) for highly accelerated cardiac MRI. Magn. Reson. Med. 74(5), 1266–1278 (2015)

    Article  Google Scholar 

  2. Akçakaya, M., Moeller, S., Weingärtner, S., Uğurbil, K.: Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: database-free deep learning for fast imaging. Magn. Reson. Med. 81(1), 439–453 (2019). https://doi.org/10.1002/mrm.27420

    Article  Google Scholar 

  3. Bai, W., Suzuki, H., Huang, J., et al.: A population-based phenome-wide association study of cardiac and aortic structure and function. Nat. Med. 26(10), 1654–1662 (2020)

    Article  Google Scholar 

  4. Clough, J.R., et al.: Global and local interpretability for cardiac MRI classification. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 656–664. Springer International Publishing (2019)

    Google Scholar 

  5. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  6. Elghazaly, H., McCracken, C., Szabo, L., et al.: Characterizing the hypertensive cardiovascular phenotype in the UK biobank. Eur. Heart J. Cardiovasc. Imaging (2023). https://doi.org/10.1093/ehjci/jead123

    Article  Google Scholar 

  7. Gong, S., Lu, W., Xie, J., Zhang, X., Zhang, S., Dou, Q.: Robust cardiac mri segmentation with data-centric models to improve performance via intensive pre-training and augmentation. In: International Workshop on Statistical Atlases and Computational Models of the Heart, pp. 494–504. Springer (2022)

    Google Scholar 

  8. Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–10 (2002)

    Article  Google Scholar 

  9. Haji-Valizadeh, H., Guo, R., Kucukseymen, S., et al.: Comparison of complex k-space data and magnitude-only for training of deep learning-based artifact suppression for real-time cine MRI. Front. Phys. 9, 684184 (2021)

    Article  Google Scholar 

  10. Hammernik, K., Pan, J., Rueckert, D., Küstner, T.: Motion-guided physics-based learning for cardiac MRI reconstruction. In: 2021 55th Asilomar Conference on Signals, Systems, and Computers, pp. 900–907. IEEE (2021)

    Google Scholar 

  11. He, K., et al.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  12. Inácio, M.H.A., et al.: Cardiac age prediction using graph neural networks. medRxiv (2023). 10.1101/2023.04.19.23287590

    Google Scholar 

  13. Islam, S., et al.: A comprehensive survey on applications of transformers for deep learning tasks. Expert Syst. Appl. 122666 (2023)

    Google Scholar 

  14. Kim, T., Garg, P., Haldar, J.: Loraki: Autocalibrated recurrent neural networks for autoregressive mri reconstruction in k-space. arXiv preprint arXiv:1904.09390 (2019)

  15. Küstner, T., et al.: Self-supervised motion-corrected image reconstruction network for 4d magnetic resonance imaging of the body trunk. APSIPA Trans. Sign. Inf. Process. 11(1) (2022)

    Google Scholar 

  16. Küstner, T., et al.: LAPNET: non-rigid registration derived in k-space for magnetic resonance imaging. IEEE Trans. Med. Imaging 40(12), 3686–3697 (2021)

    Article  Google Scholar 

  17. Li, F., Zhou, L., Wang, Y., et al.: Modeling long-range dependencies for weakly supervised disease classification and localization on chest X-ray. Quant. Imaging Med. Surg. 12(6), 3364 (2022)

    Article  Google Scholar 

  18. Lustig, M., Pauly, J.M.: SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn. Reson. Med. 64(2), 457–471 (2010). https://doi.org/10.1002/mrm.22428

    Article  Google Scholar 

  19. Lyu, J., et al.: The state-of-the-art in cardiac mri reconstruction: Results of the cmrxrecon challenge in miccai 2023. arXiv preprint arXiv:2404.01082 (2024)

  20. Oh, C., Kim, D., Chung, J.Y., et al.: A k-space-to-image reconstruction network for MRI using recurrent neural network. Med. Phys. 48(1), 193–203 (2021)

    Article  Google Scholar 

  21. Pan, J., Huang, W., Rueckert, D., Küstner, T., Hammernik, K.: Reconstruction-driven motion estimation for motion-compensated MR CINE imaging. IEEE Trans. Med. Imaging (2024)

    Google Scholar 

  22. Pan, J., Rueckert, D., Küstner, T., Hammernik, K.: Learning-based and unrolled motion-compensated reconstruction for cardiac MR CINE imaging. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 686–696 (2022)

    Google Scholar 

  23. Pan, J., et al.: Global k-space interpolation for dynamic MRI reconstruction using masked image modeling. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 228–238. Springer (2023)

    Google Scholar 

  24. Petersen, S.E., et al.: UK Biobank’s cardiovascular magnetic resonance protocol. JCMR pp. 1–7 (2015)

    Google Scholar 

  25. Rempe, M., Mentzel, F., Pomykala, K.L., et al.: k-strip: a novel segmentation algorithm in k-space for the application of skull stripping. Comput. Methods Programs Biomed. 243, 107912 (2024)

    Article  Google Scholar 

  26. Schlemper, J., et al.: Cardiac MR segmentation from undersampled k-space using deep latent representation learning. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part I. pp. 259–267. Springer International Publishing (2018).

    Google Scholar 

  27. Shah, M., et al.: Environmental and genetic predictors of human cardiovascular ageing. Nat. Commun. 14(1), 4941 (2023)

    Google Scholar 

  28. Sriram, A., et al.: End-to-end variational networks for accelerated MRI reconstruction. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part II 23. pp. 64–73. Springer (2020)

    Google Scholar 

  29. Zhang, Y., Chen, C., Shit, S., Starck, S., Rueckert, D., Pan, J.: Whole heart 3d+ t representation learning through sparse 2d cardiac mr images. arXiv preprint arXiv:2406.00329 (2024)

  30. Zhang, Y., Stolt-Ansó, N., Pan, J., Huang, W., Hammernik, K., Rueckert, D.: Direct cardiac segmentation from undersampled k-space using transformers. arXiv preprint arXiv:2406.00192 (2024)

Download references

Acknowledgements and Disclosure of Interests

This research has been conducted using the UK Biobank Resource under Application Number 87802. This work is funded by the European Research Council (ERC) project Deep4MI (884622). The authors have no competing interests to declare that are relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruochen Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 274 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, R., Pan, J., Zhu, Y., Ni, J., Rueckert, D. (2025). Classification, Regression and Segmentation Directly from K-Space in Cardiac MRI. In: Xu, X., Cui, Z., Rekik, I., Ouyang, X., Sun, K. (eds) Machine Learning in Medical Imaging. MLMI 2024. Lecture Notes in Computer Science, vol 15241. Springer, Cham. https://doi.org/10.1007/978-3-031-73284-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73284-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73283-6

  • Online ISBN: 978-3-031-73284-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics