Skip to main content

Lung-CADex: Fully Automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15241))

Included in the following conference series:

  • 314 Accesses

Abstract

Lung cancer has been one of the major threats to human life for decades. Computer-aided diagnosis can help with early lung nodule detection and facilitate subsequent nodule characterization. Large Visual Language models (VLMs) have been found effective for multiple downstream medical tasks that rely on both imaging and text data. However, lesion level detection and subsequent diagnosis using VLMs have not been explored yet. We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM. CADe trains on a prompt suite on input computed tomography (CT) scans by using the CLIP text encoder through prefix tuning. We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning. Training and validation of CADe and CADx have been done using one of the largest publicly available datasets, called LIDC. To check the generalization ability of the model, it is also evaluated on a challenging dataset, LUNGx. Our experimental results show that the proposed methods achieve a sensitivity of 0.86 compared to 0.76 that of other fully supervised methods. The source code, datasets and pre-processed data can be accessed using the link: https://github.com/Precision-Medical-Imaging-Group/Lung-CADex.

Supported by Higher Education Commission Pakistan under NRPU Project no: 17019.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armato, S.G., III., et al.: Lungx challenge for computerized lung nodule classification. J. Med. Imaging 3(4), 044506–044506 (2016)

    Article  Google Scholar 

  2. Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  3. Causey, J.L., et al.: Highly accurate model for prediction of lung nodule malignancy with CT scans. Sci. Rep. 8(1), 9286 (2018)

    Article  Google Scholar 

  4. Choi, W., Dahiya, N., Nadeem, S.: Cirdataset: a large-scale dataset for clinically-interpretable lung nodule radiomics and malignancy prediction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 13–22. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_2

    Chapter  Google Scholar 

  5. Gong, S., et al.: 3dsam-adapter: holistic adaptation of SAM from 2D to 3D for promptable medical image segmentation. arXiv preprint arXiv:2306.13465 (2023)

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  8. Liu, S., et al.: No surprises: training robust lung nodule detection for low-dose CT scans by augmenting with adversarial attacks. IEEE Trans. Med. Imaging 40(1), 335–345 (2020)

    Article  Google Scholar 

  9. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical images. Nat. Commun. 15(1), 654 (2024)

    Article  Google Scholar 

  10. Mariotto, A.B., Robin Yabroff, K., Shao, Y., Feuer, E.J., Brown, M.L.: Projections of the cost of cancer care in the united states: 2010–2020. J. Natl Cancer Inst. 103(2), 117–128 (2011)

    Article  Google Scholar 

  11. Moore, M.A., et al.: Cancer epidemiology in mainland south-east Asia-past, present and future. Asian Pac. J. Cancer Prev. 11(Suppl 2), 67–80 (2010)

    Google Scholar 

  12. Niu, C., Wang, G.: Unsupervised contrastive learning based transformer for lung nodule detection. Phys. Med. Bio. 67(20), 204001 (2022)

    Article  Google Scholar 

  13. Ozdemir, O., Russell, R.L., Berlin, A.A.: A 3D probabilistic deep learning system for detection and diagnosis of lung cancer using low-dose CT scans. IEEE Trans. Med. Imaging 39(5), 1419–1429 (2019)

    Article  Google Scholar 

  14. Planchard, D., et al.: Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv192–iv237 (2018)

    Google Scholar 

  15. Qiu, Z., Hu, Y., Li, H., Liu, J.: Learnable ophthalmology SAM. arXiv preprint arXiv:2304.13425 (2023)

  16. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  17. Setio, A.A.A., et al.: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35(5), 1160–1169 (2016)

    Article  Google Scholar 

  18. Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42, 1–13 (2017)

    Article  Google Scholar 

  19. Shaharabany, T., Dahan, A., Giryes, R., Wolf, L.: Autosam: adapting SAM to medical images by overloading the prompt encoder. arXiv preprint arXiv:2306.06370 (2023)

  20. Shaukat, F., Raja, G., Frangi, A.F.: Computer-aided detection of lung nodules: a review. J. Med. Imaging 6(2), 020901–020901 (2019)

    Article  Google Scholar 

  21. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2019. CA: Can. J. Clin. 69(1), 7–34 (2019)

    Google Scholar 

  22. Sung, H., et al.: Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Can. J. Clin. 71(3), 209–249 (2021)

    Google Scholar 

  23. Tang, H., Zhang, C., Xie, X.: NoduleNet: decoupled false positive reduction for pulmonary nodule detection and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019, Part VI. LNCS, vol. 11769, pp. 266–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_30

    Chapter  Google Scholar 

  24. Zhu, W., Liu, C., Fan, W., Xie, X.: Deeplung: deep 3D dual path nets for automated pulmonary nodule detection and classification. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 673–681. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furqan Shaukat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaukat, F., Anwar, S.M., Parida, A., Lam, V.K., Linguraru, M.G., Shah, M. (2025). Lung-CADex: Fully Automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images. In: Xu, X., Cui, Z., Rekik, I., Ouyang, X., Sun, K. (eds) Machine Learning in Medical Imaging. MLMI 2024. Lecture Notes in Computer Science, vol 15241. Springer, Cham. https://doi.org/10.1007/978-3-031-73284-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73284-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73283-6

  • Online ISBN: 978-3-031-73284-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics