Skip to main content

Identifying Nonalcoholic Fatty Liver Disease and Advanced Liver Fibrosis from MRI in UK Biobank

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2024)

Abstract

Non-alcoholic fatty liver disease (NAFLD) and its progressive form of non-alcoholic steatohepatitis (NASH) pose a major public health problem that affects more than 30% of the global population. Since NAFLD is asymptomatic in the early stages, sufferers often remain untreated until the onset of NASH, which can lead to fibrosis and eventually cirrhosis of the liver. This condition is traditionally diagnosed via liver biopsy, which is invasive and associated with significant risks for the patient and susceptibility to sampling errors. These limitations underscore the necessity for non-invasive tools to assess disease severity. We explore the potential of magnetic resonance imaging (MRI) sequences in the UK Biobank (UKBB) to classify individuals as having either a healthy liver, NAFLD, or progressive NAFLD-associated advanced fibrosis. For the classification inputs, we utilize proton density fat fraction (PDFF) and native spin-lattice relaxation time (T1) maps, as well as serum biomarker data for assessing the sub-cohorts. The best models achieve near-perfect performance on identifying healthy individuals and NAFLD with AUCs of 0.99 and 0.98 respectively, while individuals with advanced fibrosis are under-diagnosed with an AUC of 0.67 at best. While segmentation decreases model performance, when classifying on full images, we make use of non-liver-related features, which is sub-optimal if we want to detect liver-related imaging biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This research has been conducted using data from UK Biobank, a major biomedical database which can be found in https://www.ukbiobank.ac.uk/. This research has been conducted using the UK Biobank Resource under Application Number 53639.

References

  1. Younossi, Z.M., Koenig, A.B., Abdelatif, D., Fazel, Y., Henry, L., Wymer, M.: Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1), 73–84 (2016)

    Article  Google Scholar 

  2. Toshimitsu, K., et al.: Dietary habits and nutrient intake in non-alcoholic steatohepatitis. Nutrition 23(1), 46–52 (2007)

    Article  Google Scholar 

  3. Miao, L., Targher, G., Byrne, C.D., Cao, Y.-Y., Zheng, M.-H.: Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. (2024)

    Google Scholar 

  4. Ward, Z.J., et al.: Projected US state-level prevalence of adult obesity and severe obesity. N. Engl. J. Med. 381(25), 2440–2450 (2019)

    Article  Google Scholar 

  5. Friedman, S.L.: Liver fibrosis-from bench to bedside. J. Hepatol. 38, 38–53 (2003)

    Article  Google Scholar 

  6. Kinner, S., Reeder, S.B., Yokoo, T.: Quantitative imaging biomarkers of NAFLD. Dig. Dis. Sci. 61, 1337–1347 (2016)

    Article  Google Scholar 

  7. Langner, T., Strand, R., Ahlström, H., Kullberg, J.: Large-scale biometry with interpretable neural network regression on UK biobank body MRI. Sci. Rep. 10(1), 17752 (2020)

    Article  Google Scholar 

  8. Caussy, C., Reeder, S.B., Sirlin, C.B., Loomba, R.: Noninvasive, quantitative assessment of liver fat by MRI-PDFF as an endpoint in Nash trials. Hepatology 68(2), 763–772 (2018)

    Article  Google Scholar 

  9. Nauffal, V., et al.: Noninvasive assessment of organ-specific and shared pathways in multi-organ fibrosis using T1 mapping. Natu. Med., 1–12 (2024)

    Google Scholar 

  10. Taylor, A.J., Salerno, M., Dharmakumar, R., Jerosch-Herold, M.: T1 mapping: basic techniques and clinical applications. JACC Cardiovasc. Imaging 9(1), 67–81 (2016)

    Google Scholar 

  11. Mojtahed, A., et al.: Reference range of liver corrected t1 values in a population at low risk for fatty liver disease-a UK biobank sub-study, with an appendix of interesting cases. Abdom. Radiol. 44, 72–84 (2019)

    Article  Google Scholar 

  12. Li, X., Liu, H., Wang, R., Yang, J., Zhang, Y., Li, C.: Gadoxetate-disodium-enhanced magnetic resonance imaging for liver fibrosis staging: a systematic review and meta-analysis. Clin. Radiol. 75(4), 319-e11 (2020)

    Article  Google Scholar 

  13. Wojciechowska, M., Malacrino, S., Garcia Martin, N., Fehri, H., Rittscher, J.: Early detection of liver fibrosis using graph convolutional networks. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 217–226. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_21

    Chapter  Google Scholar 

  14. Gao, Z., Liu, Y., Wu, F., Shi, N., Shi, Y., Zhuang, X.: A reliable and interpretable framework of multi-view learning for liver fibrosis staging. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14224, pp. 178–188. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43904-9_18

    Chapter  Google Scholar 

  15. Hydes, T.J., et al.: The impact of non-alcoholic fatty liver disease and liver fibrosis on adverse clinical outcomes and mortality in patients with chronic kidney disease: a prospective cohort study using the UK biobank. BMC Med. 21(1), 185 (2023)

    Article  Google Scholar 

  16. Angulo, P., et al.: The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45(4), 846–854 (2007)

    Article  Google Scholar 

  17. Shah, A.G.: Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 7(10), 1104–1112 (2009)

    Article  Google Scholar 

  18. Sterling, R.K., et al.: Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 43(6), 1317–1325 (2006)

    Article  Google Scholar 

  19. Paik, J., Golabi, P., Younoszai, Z., Mishra, A., Trimble, G., Younossi, Z.M.: Chronic kidney disease is independently associated with increased mortality in patients with nonalcoholic fatty liver disease. Liver Int. 39(2), 342–352 (2019)

    Article  Google Scholar 

  20. Glover, G.H., Schneider, E.: Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn. Reson. Med. 18(2), 371–383 (1991)

    Article  Google Scholar 

  21. Piechnik, S.K.: Shortened modified look-locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J. Cardiovasc. Magn. Reson. 12(1), 69 (2010)

    Google Scholar 

  22. Falk, T., et al.: U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16(1), 67–70 (2019)

    Article  Google Scholar 

  23. Macdonald, J.A., Zhu, Z., Konkel, B., Mazurowski, M.A., Wiggins, W.F., Bashir, M.R.: Duke liver dataset: a publicly available liver MRI dataset with liver segmentation masks and series labels. Radiol. Artif. Intell. 5(5), e220275 (2023)

    Google Scholar 

  24. Hectors, S.J., et al.: Fully automated prediction of liver fibrosis using deep learning analysis of gadoxetic acid-enhanced MRI. Eur. Radiol. 31, 3805–3814 (2021)

    Article  Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Al-Belmpeisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Belmpeisi, R. et al. (2025). Identifying Nonalcoholic Fatty Liver Disease and Advanced Liver Fibrosis from MRI in UK Biobank. In: Xu, X., Cui, Z., Rekik, I., Ouyang, X., Sun, K. (eds) Machine Learning in Medical Imaging. MLMI 2024. Lecture Notes in Computer Science, vol 15242. Springer, Cham. https://doi.org/10.1007/978-3-031-73290-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73290-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73292-8

  • Online ISBN: 978-3-031-73290-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics