Skip to main content

CardiacNet: Learning to Reconstruct Abnormalities for Cardiac Disease Assessment from Echocardiogram Videos

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15081))

Included in the following conference series:

  • 361 Accesses

Abstract

Echocardiogram video plays a crucial role in analysing cardiac function and diagnosing cardiac diseases. Current deep neural network methods primarily aim to enhance diagnosis accuracy by incorporating prior knowledge, such as segmenting cardiac structures or lesions annotated by human experts. However, diagnosing the inconsistent behaviours of the heart, which exist across both spatial and temporal dimensions, remains extremely challenging. For instance, the analysis of cardiac motion acquires both spatial and temporal information from the heartbeat cycle. To address this issue, we propose a novel reconstruction-based approach named CardiacNet to learn a better representation of local cardiac structures and motion abnormalities through echocardiogram videos. CardiacNet accompanied by the Consistency Deformation Codebook (CDC) and the Consistency Deformed-Discriminator (CDD) to learn the commonalities across abnormal and normal samples by incorporating cardiac prior knowledge. In addition, we propose benchmark datasets named CardiacNet-PAH and CardiacNet-ASD for evaluating the effectiveness of cardiac disease assessment. In experiments, our CardiacNet can achieve state-of-the-art results in three different cardiac disease assessment tasks on public datasets CAMUS, EchoNet, and our datasets. The code and dataset are available at: https://github.com/xmed-lab/CardiacNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    One step TFlops of denoising. A total of 1000 steps are used in inference.

References

  1. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. NIPS 26 (2013)

    Google Scholar 

  2. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: CVPR, pp. 12873–12883 (2021)

    Google Scholar 

  3. Ganame, J., Mertens, L., et al.: Regional myocardial deformation in children with hypertrophic cardiomyopathy: morphological and clinical correlations. Eur. Heart J. 28(23), 2886–2894 (2007)

    Google Scholar 

  4. Geske, J.B., Bos, J.M., Gersh, B.J., Ommen, S.R., Eidem, B.W., Ackerman, M.J.: Deformation patterns in genotyped patients with hypertrophic cardiomyopathy. Eur. Heart J. Cardiovascu. Imaging 15(4), 456–465 (2014)

    Article  Google Scholar 

  5. Ghorbani, A., et al.: Deep learning interpretation of echocardiograms. NPJ digit. med. 3(1), 10 (2020)

    Article  Google Scholar 

  6. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: ICCV (2019)

    Google Scholar 

  7. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history of 2D cnns and imagenet? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6546–6555 (2018)

    Google Scholar 

  8. Hörmander, F., Totaro, N., Waldschmidt, A.V.M.: Grundlehren der mathematischen wissenschaften 332, vol. 5. Springer (2006)

    Google Scholar 

  9. Huo, X., et al.: HiFuse: hierarchical multi-scale feature fusion network for medical image classification. Biomed. Signal Process. Control 87, 105534 (2024)

    Article  Google Scholar 

  10. Kamran, S.A., Hossain, K.F., Tavakkoli, A., Zuckerbrod, S.L., Baker, S.A.: VTGAN: semi-supervised retinal image synthesis and disease prediction using vision transformers. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 3228–3238 (2021). https://doi.org/10.1109/ICCVW54120.2021.00362

  11. Kascenas, A., Pugeault, N., O’Neil, A.Q.: Denoising autoencoders for unsupervised anomaly detection in brain MRI. In: International Conference on Medical Imaging with Deep Learning, pp. 653–664. PMLR (2022)

    Google Scholar 

  12. Lai, W.W., Mertens, L.L., Cohen, M.S., Geva, T.: Echocardiography in Pediatric and Congenital Heart Disease: From Fetus to Adult. John Wiley & Sons (2015)

    Google Scholar 

  13. Leclerc, S., et al.: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging 38(9), 2198–2210 (2019)

    Article  Google Scholar 

  14. Lin, X., et al.: Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction. Front. Cardiovasc. Med. 9, 903660 (2022)

    Article  Google Scholar 

  15. Lin, Y., Luo, Z., Zhao, W., Li, X.: Learning deep intensity field for extremely sparse-view CBCT reconstruction. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 13–23. Springer Nature Switzerland (2023). https://doi.org/10.1007/978-3-031-43999-5_2

  16. Lin, Y., Wang, H., Chen, J., Li, X.: Learning 3D gaussians for extremely sparse-view cone-beam CT reconstruction (2024). https://arxiv.org/abs/2407.01090

  17. Lin, Y., Yang, J., Wang, H., Ding, X., Zhao, W., Li, X.: C⌃2rv: cross-regional and cross-view learning for sparse-view CBCT reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11205–11214 (June 2024)

    Google Scholar 

  18. Liu, B., et al.: A deep learning framework assisted echocardiography with diagnosis, lesion localization, phenogrouping heterogeneous disease, and anomaly detection. Sci. Rep. 13(1), 3 (2023)

    Article  Google Scholar 

  19. Lu, Y., Li, K., Pu, B., Tan, Y., Zhu, N.: A YOLOX-based deep instance segmentation neural network for cardiac anatomical structures in fetal ultrasound images. IEEE/ACM Trans. Comput. Biol. Bioinform. (2022)

    Google Scholar 

  20. Mallya, M., Hamarneh, G.: Deep multimodal guidance for medical image classification. In: MICCAI. Springer (2022). https://doi.org/10.1007/978-3-031-16449-1_29

  21. McDonagh, T.A., et al.: 2021 esc guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the european society of cardiology (esc) with the special contribution of the heart failure association (hfa) of the esc. Eur. Heart J. 42(36), 3599–3726 (2021)

    Article  Google Scholar 

  22. Mcleod, G., et al.: Echocardiography in congenital heart disease. Prog. Cardiovasc. Dis. 61(5–6), 468–475 (2018)

    Article  Google Scholar 

  23. Meena, T., Kabiraj, A., Reddy, P.B., Roy, S.: Weakly supervised confidence aware probabilistic cam multi-thorax anomaly localization network. In: 2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI), pp. 309–314. IEEE (2023)

    Google Scholar 

  24. Niemann, M., et al.: Echocardiographic quantification of regional deformation helps to distinguish isolated left ventricular non-compaction from dilated cardiomyopathy. Eur. J. Heart Fail. 14(2), 155–161 (2012)

    Article  Google Scholar 

  25. Ouyang, D., et al.: Video-based AI for beat-to-beat assessment of cardiac function. Nature 580(7802), 252–256 (2020)

    Article  Google Scholar 

  26. Oxborough, D., et al.: The right ventricle of the endurance athlete: the relationship between morphology and deformation. J. Am. Soc. Echocardiogr. 25(3), 263–271 (2012)

    Article  Google Scholar 

  27. Popp, R.L.: Echocardiographic assessment of cardiac disease. Circulation 54(4), 538–552 (1976)

    Article  Google Scholar 

  28. Pu, B., et al.: HFSCCD: a hybrid neural network for fetal standard cardiac cycle detection in ultrasound videos. IEEE J. Biomed. Health Inform. (2024)

    Google Scholar 

  29. Pu, B., et al.: MobileUNet-FPN: a semantic segmentation model for fetal ultrasound four-chamber segmentation in edge computing environments. IEEE J. Biomed. Health Inform. 26(11), 5540–5550 (2022)

    Article  Google Scholar 

  30. Pu, B., et al.: Unsupervised domain adaptation for anatomical structure detection in ultrasound images. In: Forty-first International Conference on Machine Learning

    Google Scholar 

  31. Pu, B., et al.: M3-UDA: a new benchmark for unsupervised domain adaptive fetal cardiac structure detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11630 (2024)

    Google Scholar 

  32. Pu, B., Zhu, N., Li, K., Li, S.: Fetal cardiac cycle detection in multi-resource echocardiograms using hybrid classification framework. Futur. Gener. Comput. Syst. 115, 825–836 (2021)

    Article  Google Scholar 

  33. Ristea, N.C., et al.: CyTran: cycle-consistent transformers for non-contrast to contrast CT translation. Neurocomputing (2023). https://doi.org/10.1016/j.neucom.2023.03.072

    Article  Google Scholar 

  34. Ryser, A., Manduchi, L., Laumer, F., Michel, H., Wellmann, S., Vogt, J.E.: Anomaly detection in echocardiograms with dynamic variational trajectory models. In: Machine Learning for Healthcare Conference, pp. 425–458. PMLR (2022)

    Google Scholar 

  35. Sanchez, P., Kascenas, A., Liu, X., O’Neil, A.Q., Tsaftaris, S.A.: What is healthy? generative counterfactual diffusion for lesion localization. In: MICCAI Workshop on Deep Generative Models, pp. 34–44. Springer (2022). https://doi.org/10.1007/978-3-031-18576-2_4

  36. Sanjeevi, G., Gopalakrishnan, U., Pathinarupothi, R.K., Madathil, T.: Automatic diagnostic tool for detection of regional wall motion abnormality from echocardiogram. J. Med. Syst. 47(1), 13 (2023)

    Article  Google Scholar 

  37. Schäfer, M., et al.: Myocardial strain-curve deformation patterns after fontan operation. Sci. Rep. 13(1), 11912 (2023)

    Article  Google Scholar 

  38. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Article  Google Scholar 

  39. Schlemper, J., et al.: Attention gated networks: learning to leverage salient regions in medical images. Med. Image Anal. 53, 197–207 (2019)

    Article  Google Scholar 

  40. Silva-Rodríguez, J., Naranjo, V., Dolz, J.: Constrained unsupervised anomaly segmentation. Med. Image Anal. 80, 102526 (2022)

    Article  Google Scholar 

  41. Sun, D., et al.: Chamber attention network (CAN): towards interpretable diagnosis of pulmonary artery hypertension using echocardiography. J. Adv. Res (2023)

    Google Scholar 

  42. Tseng, C.H., Chien, S.J., Wang, P.S., Lee, S.J., Pu, B., Zeng, X.J.: Real-time automatic m-mode echocardiography measurement with panel attention. IEEE J. Biomed. Health Inform. (2024)

    Google Scholar 

  43. Upton, M., Gibson, D., Brown, D.: Echocardiographic assessment of abnormal left ventricular relaxation in man. Heart 38(10), 1001–1009 (1976)

    Article  Google Scholar 

  44. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. NIPS 30 (2017)

    Google Scholar 

  45. Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: Diffusion models for medical anomaly detection. In: MICCAI, pp. 35–45. Springer (2022). https://doi.org/10.1007/978-3-031-16452-1_4

  46. Wolleb, J., Sandkühler, R., Cattin, P.C.: DescarGAN: disease-specific anomaly detection with weak supervision. In: MICCAI, pp. 14–24. Springer (2020). https://doi.org/10.1007/978-3-030-59719-1_2

  47. Yang, J., Ding, X., Zheng, Z., Xu, X., Li, X.: GraphECHO: graph-driven unsupervised domain adaptation for echocardiogram video segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11878–11887 (2023)

    Google Scholar 

  48. Yu, K., Ghosh, S., Liu, Z., Deible, C., Batmanghelich, K.: Anatomy-guided weakly-supervised abnormality localization in chest x-rays. In: MICCAI, pp. 658–668. Springer (2022). https://doi.org/10.1007/978-3-031-16443-9_63

  49. Zaman, F., et al.: Spatio-temporal hybrid neural networks reduce erroneous human “judgement calls” in the diagnosis of takotsubo syndrome. EClinicalMedicine 40 (2021)

    Google Scholar 

  50. Zhang, J., et al.: Viral pneumonia screening on chest x-rays using confidence-aware anomaly detection. IEEE Trans. Med. Imaging 40(3), 879–890 (2020)

    Article  Google Scholar 

  51. Zheng, Z., Yang, J., Ding, X., Xu, X., Li, X.: GL-fusion: Global-local fusion network for multi-view echocardiogram video segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 78–88. Springer (2023). https://doi.org/10.1007/978-3-031-43901-8_8

  52. Zimmerer, D., Kohl, S.A., Petersen, J., Isensee, F., Maier-Hein, K.H.: Context-encoding variational autoencoder for unsupervised anomaly detection. arXiv preprint arXiv:1812.05941 (2018)

Download references

Acknowledgement

This work was supported by a research grant from the Beijing Institute of Collaborative Innovation (BICI) under collaboration with the Hong Kong University of Science and Technology under Grant HCIC-004 and a project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone (HZQB-KCZYB-2020083).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowei Xu or Xiaomeng Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1299 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Lin, Y., Pu, B., Guo, J., Xu, X., Li, X. (2025). CardiacNet: Learning to Reconstruct Abnormalities for Cardiac Disease Assessment from Echocardiogram Videos. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15081. Springer, Cham. https://doi.org/10.1007/978-3-031-73337-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73337-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73336-9

  • Online ISBN: 978-3-031-73337-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics