Skip to main content

SAFNet: Selective Alignment Fusion Network for Efficient HDR Imaging

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15084))

Included in the following conference series:

  • 357 Accesses

Abstract

Multi-exposure High Dynamic Range (HDR) imaging is a challenging task when facing truncated texture and complex motion. Existing deep learning-based methods have achieved great success by either following the alignment and fusion pipeline or utilizing attention mechanism. However, the large computation cost and inference delay hinder them from deploying on resource limited devices. In this paper, to achieve better efficiency, a novel Selective Alignment Fusion Network (SAFNet) for HDR imaging is proposed. After extracting pyramid features, it jointly refines valuable area masks and cross-exposure motion in selected regions with shared decoders, and then fuses high quality HDR image in an explicit way. This approach can focus the model on finding valuable regions while estimating their easily detectable and meaningful motion. For further detail enhancement, a lightweight refine module is introduced which enjoys privileges from previous optical flow, selection masks and initial prediction. Moreover, to facilitate learning on samples with large motion, a new window partition cropping method is presented during training. Experiments on public and newly developed challenging datasets show that proposed SAFNet not only exceeds previous SOTA competitors quantitatively and qualitatively, but also runs order of magnitude faster. Code and dataset is available at https://github.com/ltkong218/SAFNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bogoni, L.: Extending dynamic range of monochrome and color images through fusion. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, vol. 3, pp. 7–12 (2000)

    Google Scholar 

  2. Catley-Chandar, S., Tanay, T., Vandroux, L., Leonardis, A., Slabaugh, G., Pérez-Pellitero, E.: FlexHDR: modeling alignment and exposure uncertainties for flexible HDR imaging. IEEE Trans. Image Process. 31, 5923–5935 (2022)

    Article  Google Scholar 

  3. Chen, J., Yang, Z., Chan, T.N., Li, H., Hou, J., Chau, L.P.: Attention-guided progressive neural texture fusion for high dynamic range image restoration. IEEE Trans. Image Process. 31, 2661–2672 (2022)

    Article  Google Scholar 

  4. Chung, H., Cho, N.I.: LAN-HDR: luminance-based alignment network for high dynamic range video reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12760–12769 (2023)

    Google Scholar 

  5. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 369–378. SIGGRAPH 1997 (1997)

    Google Scholar 

  6. Fossum, E.R., Hondongwa, D.B.: A review of the pinned photodiode for CCD and CMOS image sensors. IEEE J. Electron Devices Soc. 2(3), 33–43 (2014)

    Article  Google Scholar 

  7. Froehlich, J., Grandinetti, S., Eberhardt, B., Walter, S., Schilling, A., Brendel, H.: Creating cinematic wide gamut HDR-video for the evaluation of tone mapping operators and HDR-displays. In: Digital Photography X, vol. 9023, p. 90230X (2014)

    Google Scholar 

  8. Gallo, O., Gelfandz, N., Chen, W.C., Tico, M., Pulli, K.: Artifact-free high dynamic range imaging. In: 2009 IEEE International Conference on Computational Photography (ICCP), pp. 1–7 (2009)

    Google Scholar 

  9. Grosch, T.: Fast and robust high dynamic range image generation with camera and object movement. In: IEEE Conference of Vision, Modeling and Visualization (2006)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  11. Hu, J., Gallo, O., Pulli, K., Sun, X.: HDR Deghosting: how to deal with saturation? In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1163–1170 (2013)

    Google Scholar 

  12. Jacobs, K., Loscos, C., Ward, G.: Automatic high-dynamic range image generation for dynamic scenes. IEEE Comput. Graphics Appl. 28(2), 84–93 (2008)

    Article  Google Scholar 

  13. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Computer Vision – ECCV 2016, pp. 694–711 (2016)

    Google Scholar 

  14. Kalantari, N.K., Ramamoorthi, R.: Deep high dynamic range imaging of dynamic scenes. ACM Trans. Graph. 36(4), 1–12 (2017)

    Google Scholar 

  15. Kang, S.B., Uyttendaele, M., Winder, S., Szeliski, R.: High dynamic range video. ACM Trans. Graph. 22(3), 319–325 (2003)

    Article  Google Scholar 

  16. Kearney, J.K., Thompson, W.B., Boley, D.L.: Optical flow estimation: an error analysis of gradient-based methods with local optimization. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9(2), 229–244 (1987)

    Google Scholar 

  17. Khan, E.A., Akyuz, A.O., Reinhard, E.: Ghost removal in high dynamic range images. In: 2006 International Conference on Image Processing, pp. 2005–2008 (2006)

    Google Scholar 

  18. Kong, L., et al.: IFRNet: intermediate feature refine network for efficient frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  19. Kong, L., Shen, C., Yang, J.: FastFlowNet: a lightweight network for fast optical flow estimation. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 10310–10316 (2021)

    Google Scholar 

  20. Kong, L., Yang, J.: FdFlowNet: fast optical flow estimation using a deep lightweight network. In: 2020 IEEE International Conference on Image Processing (ICIP) (2020)

    Google Scholar 

  21. Kong, L., Yang, J.: MDFlow: unsupervised optical flow learning by reliable mutual knowledge distillation. IEEE Trans. Circ. Syst. Video Technol. 33, 677–688 (2022)

    Article  Google Scholar 

  22. Lee, C., Li, Y., Monga, V.: Ghost-free high dynamic range imaging via rank minimization. IEEE Signal Process. Lett. 21(9), 1045–1049 (2014)

    Article  Google Scholar 

  23. Liu, Z., et al.: ADNet: attention-guided deformable convolutional network for high dynamic range imaging. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 463–470 (2021)

    Google Scholar 

  24. Liu, Z., Wang, Y., Zeng, B., Liu, S.: Ghost-free high dynamic range imaging with context-aware transformer. In: Computer Vision – ECCV 2022, pp. 344–360 (2022)

    Google Scholar 

  25. Ma, K., Duanmu, Z., Zhu, H., Fang, Y., Wang, Z.: Deep guided learning for fast multi-exposure image fusion. IEEE Trans. Image Process. 29, 2808–2819 (2020)

    Article  Google Scholar 

  26. Ma, K., Li, H., Yong, H., Wang, Z., Meng, D., Zhang, L.: Robust multi-exposure image fusion: a structural patch decomposition approach. IEEE Trans. Image Process. 26(5), 2519–2532 (2017)

    Article  MathSciNet  Google Scholar 

  27. Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. 30(4), 1–14 (2011)

    Article  Google Scholar 

  28. Meister, S., Hur, J., Roth, S.: UnFlow: unsupervised learning of optical flow with a bidirectional census loss. In: Proceedings of the AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  29. Niu, Y., Wu, J., Liu, W., Guo, W., Lau, R.W.H.: HDR-GAN: HDR image reconstruction from multi-exposed LDR images with large motions. IEEE Trans. Image Process. 30, 3885–3896 (2021)

    Article  Google Scholar 

  30. Oh, T.H., Lee, J.Y., Tai, Y.W., Kweon, I.S.: Robust high dynamic range imaging by rank minimization. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1219–1232 (2015)

    Article  Google Scholar 

  31. Pece, F., Kautz, J.: Bitmap movement detection: HDR for dynamic scenes. In: 2010 Conference on Visual Media Production, pp. 1–8 (2010)

    Google Scholar 

  32. Prabhakar, K.R., Agrawal, S., Singh, D.K., Ashwath, B., Babu, R.V.: Towards practical and efficient high-resolution HDR Deghosting with CNN. In: Computer Vision – ECCV 2020, pp. 497–513 (2020)

    Google Scholar 

  33. Prabhakar, K.R., Arora, R., Swaminathan, A., Singh, K.P., Babu, R.V.: A fast, scalable, and reliable Deghosting method for extreme exposure fusion. In: 2019 IEEE International Conference on Computational Photography (ICCP), pp. 1–8 (2019)

    Google Scholar 

  34. Ram Prabhakar, K., Sai Srikar, V., Venkatesh Babu, R.: DeepFuse: a deep unsupervised approach for exposure fusion with extreme exposure image pairs. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  35. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  36. Sen, P., Kalantari, N.K., Yaesoubi, M., Darabi, S., Goldman, D.B., Shechtman, E.: Robust patch-based HDR reconstruction of dynamic scenes. ACM Trans. Graph. 31(6), 1–11 (2012)

    Google Scholar 

  37. Song, J.W., Park, Y.I., Kong, K., Kwak, J., Kang, S.J.: Selective TransHDR: transformer-based selective HDR imaging using ghost region mask. In: Computer Vision – ECCV 2022, pp. 288–304 (2022)

    Google Scholar 

  38. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2432–2439 (2010)

    Google Scholar 

  39. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  40. Tel, S., et al.: Alignment-free HDR Deghosting with semantics consistent transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12836–12845 (2023)

    Google Scholar 

  41. Wu, S., Xu, J., Tai, Y.W., Tang, C.K.: Deep high dynamic range imaging with large foreground motions. In: Computer Vision – ECCV 2018, pp. 120–135 (2018)

    Google Scholar 

  42. Xiong, P., Chen, Y.: Hierarchical fusion for practical ghost-free high dynamic range imaging. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4025–4033 (2021)

    Google Scholar 

  43. Yan, Q., Chen, W., Zhang, S., Zhu, Y., Sun, J., Zhang, Y.: A unified HDR imaging method with pixel and patch level. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 22211–22220 (2023)

    Google Scholar 

  44. Yan, Q., et al.: Attention-guided network for ghost-free high dynamic range imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  45. Yan, Q., et al.: Deep HDR imaging via a non-local network. IEEE Trans. Image Process. 29, 4308–4322 (2020)

    Article  Google Scholar 

  46. Ye, Q., Xiao, J., Lam, K.-M., Okatani, T.: Progressive and selective fusion network for high dynamic range imaging. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 5290–5297 (2021)

    Google Scholar 

  47. Zhang, W., Cham, W.K.: Gradient-directed multiexposure composition. IEEE Trans. Image Process. 21(4), 2318–2323 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwei Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3537 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kong, L., Li, B., Xiong, Y., Zhang, H., Gu, H., Chen, J. (2025). SAFNet: Selective Alignment Fusion Network for Efficient HDR Imaging. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15084. Springer, Cham. https://doi.org/10.1007/978-3-031-73347-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73347-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73346-8

  • Online ISBN: 978-3-031-73347-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics