Skip to main content

A Reference-Based Approach for Tumor Size Estimation in Monocular Laparoscopic Videos

  • Conference paper
  • First Online:
Computational Mathematics Modeling in Cancer Analysis (CMMCA 2024)

Abstract

Laparoscopic exploration of the abdominal cavity is routinely performed for the diagnosis, assessment, and staging of peritoneal metastasis (PM). Accurately measuring tumor size during this procedure is crucial for prognosis and treatment planning. As conventional approaches for tumor size measurement rely on subjective manual assessments during or after surgery, they stand to benefit from computer assistance. This study proposes a new method for measuring tumor size in laparoscopic monocular videos. Specifically, we introduce a novel mathematical equation that connects the intrinsic parameters of a monocular camera, the surface area of target and reference objects, and their distances to the camera. Furthermore, we combine this equation with an object segmentation model (Mask2Former) and a depth estimation model (MiDaS), creating an end-to-end framework that automates tumor size measurement in monocular laparoscopic videos. We evaluate the proposed method using a laparoscopy dataset comprising 18 videos depicting 76 tumor biopsies, with tumor size measured by surgeons who are experts in laparoscopic surgery. When estimating the size of the various tumors in this dataset, we obtain a Mean Absolute Error (MAE) of 2.44 mm ± 0.23 mm, demonstrating that the newly proposed method accurately predicts intraoperative tumor size. Our code and the evaluation dataset are publicly available on https://github.com/amiiiirrrr/TSEMLV.

S. A. Mousavi and F. Tozzi—These authors have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altman, D.G., Bland, J.M.: Measurement in medicine: the analysis of method comparison studies. J. Royal Stat. Soc. Ser. D Stat. 32(3), 307–317 (1983)

    Google Scholar 

  2. Alyami, M., et al.: Pressurised intraperitoneal aerosol chemotherapy: rationale, evidence, and potential indications. Lancet Oncol. 20(7), e368–e377 (2019)

    Article  Google Scholar 

  3. Andaló, F.A., Taubin, G., Goldenstein, S.: Efficient height measurements in single images based on the detection of vanishing points. Comput. Vis. Image Underst. 138, 51–60 (2015)

    Article  Google Scholar 

  4. Birkl, R., Wofk, D., Müller, M.: MiDaS v3. 1–a model zoo for robust monocular relative depth estimation. arXiv preprint arXiv:2307.14460 (2023)

  5. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1290–1299, June 2022

    Google Scholar 

  6. Criminisi, A., Reid, I., Zisserman, A.: Single view metrology. Int. J. Comput. Vision 40, 123–148 (2000)

    Article  Google Scholar 

  7. Goldstein, O., Segol, O., Gross, S.A., Jacob, H., Siersema, P.D.: Novel device for measuring polyp size: an ex vivo animal study. Gut 67, 1755–1756 (2018)

    Article  Google Scholar 

  8. Harmon, R.L., Sugarbaker, P.H.: Prognostic indicators in peritoneal carcinomatosis from gastrointestinal cancer. In: International Seminars in Surgical Oncology, vol. 2, pp. 1–10. BioMed Central (2005)

    Google Scholar 

  9. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  10. Iakovidis, D.K., Dimas, G., Karargyris, A., Bianchi, F., Ciuti, G., Koulaouzidis, A.: Deep endoscopic visual measurements. IEEE J. Biomed. Health Inform. 23(6), 2211–2219 (2018)

    Article  Google Scholar 

  11. Jacquet, P., Sugarbaker, P.H.: Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. In: Peritoneal Carcinomatosis: Principles of Management, pp. 359–374 (1996)

    Google Scholar 

  12. Oka, K., Seki, T., Akatsu, T., Wakabayashi, T., Inui, K., Yoshino, J.: Clinical study using novel endoscopic system for measuring size of gastrointestinal lesion. World J. Gastroenterol. WJG 20(14), 4050 (2014)

    Article  Google Scholar 

  13. Sugarbaker, P.H., Jablonski, K.A.: Prognostic features of 51 colorectal and 130 appendiceal cancer patients with peritoneal carcinomatosis treated by cytoreductive surgery and intraperitoneal chemotherapy. Ann. Surg. 221(2), 124 (1995)

    Article  Google Scholar 

  14. Visentini-Scarzanella, M., et al.: A structured light laser probe for gastrointestinal polyp size measurement: a preliminary comparative study. Endosc. Int. Open 6(05), E602–E609 (2018)

    Article  Google Scholar 

  15. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  16. Zhang, Z., Han, Y., Zhou, Y., Dai, M.: A novel absolute localization estimation of a target with monocular vision. Optik 124(12), 1218–1223 (2013)

    Article  Google Scholar 

  17. Zhou, M., Bao, G., Geng, Y., Alkandari, B., Li, X.: Polyp detection and radius measurement in small intestine using video capsule endoscopy. In: 2014 7th International Conference on Biomedical Engineering and Informatics, pp. 237–241. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Amir Mousavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mousavi, S.A. et al. (2025). A Reference-Based Approach for Tumor Size Estimation in Monocular Laparoscopic Videos. In: Wu, J., Qin, W., Li, C., Kim, B. (eds) Computational Mathematics Modeling in Cancer Analysis. CMMCA 2024. Lecture Notes in Computer Science, vol 15181. Springer, Cham. https://doi.org/10.1007/978-3-031-73360-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73360-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73359-8

  • Online ISBN: 978-3-031-73360-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics