Skip to main content

FoTNet Enables Preoperative Differentiation of Malignant Brain Tumors with Deep Learning

  • Conference paper
  • First Online:
Cancer Prevention, Detection, and Intervention (CaPTion 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15199))

Included in the following conference series:

  • 63 Accesses

Abstract

Glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and brain metastases (BM) are three common malignant central nervous system tumors. Accurate preoperative differentiation is essential for appropriate treatment planning and prognosis, however, it’s challenging to differentiate these tumors using MRI due to their similar anatomical structures and imaging characteristics. In this paper, we first construct a new multi-center brain MRI dataset, including 315 training cases (GBM 64, PCNSL 59, BM 192) and 124 external test cases (24:23:77). Moreover, we propose a novel framework FoTNet for accurate diagnosis of the three tumors. Our model achieves a classification accuracy of 92.5% and an average AUC of 0.9754, outperforming previous methods. Our results demonstrates the great potential of AI in assisting physicians in differentiating between GBM, PCNSL, and BM, particularly in resource-limited clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ostrom, Q.T., et al.: Cbtrus statistical report: primary brain and other central nervous system tumors diagnosed in the united states in 2012–2016. Neuro-oncology 21(Supplement_5), v1–v100 (2019)

    Google Scholar 

  2. Nayak, L., Lee, E.Q., Wen, P.Y.: Epidemiology of brain metastases. Curr. Oncol. Rep. 14, 48–54 (2012)

    Article  Google Scholar 

  3. Ohgaki, H., Kleihues, P.: The definition of primary and secondary glioblastoma. Clin. Cancer Res. 19(4), 764–772 (2013)

    Article  Google Scholar 

  4. Tan, A.C., Ashley, D.M., López, G.Y., Malinzak, M., Friedman, H.S., Khasraw, M.: Management of glioblastoma: state of the art and future directions. CA: a cancer J. Clin. 70(4), 299–312 (2020)

    Google Scholar 

  5. Ostrom, Q.T., et al.: Cbtrus statistical report: primary brain and central nervous system tumors diagnosed in the united states in 2008-2012. Neurooncology 17(suppl_4), iv1–iv62 (2015)

    Google Scholar 

  6. Wirsching, H.G., Weller, M.: Glioblastoma. Malignant Brain Tumors: State-of-the-Art Treatment, pp. 265–288 (2017)

    Google Scholar 

  7. Tabouret, E., Chinot, O., Metellus, P., Tallet, A., Viens, P., Goncalves, A.: Recent trends in epidemiology of brain metastases: an overview. Anticancer Res. 32(11), 4655–4662 (2012)

    Google Scholar 

  8. Barnholtz-Sloan, J.S., Sloan, A.E., Davis, F.G., Vigneau, F.D., Lai, P., Sawaya, R.E.: Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the metropolitan detroit cancer surveillance system. J. Clin. Oncol. 22(14), 2865–2872 (2004)

    Article  Google Scholar 

  9. Jellinger, K., Radaskiewicz, T., Slowik, F.: Primary malignant lymphomas of the central nervous system in man. In: Malignant Lymphomas of the Nervous System: International Symposium, pp. 95–102. Springer (1975)

    Google Scholar 

  10. Commins, D.L.: Pathology of primary central nervous system lymphoma. Neurosurg. Focus 21(5), 1–10 (2006)

    Article  Google Scholar 

  11. Koeller, K.K., Smirniotopoulos, J.G., Jones, R.V.: Primary central nervous system lymphoma: radiologic-pathologic correlation. Radiographics 17(6), 1497–1526 (1997)

    Article  Google Scholar 

  12. Hochberg, F.H., Miller, D.C.: Primary central nervous system lymphoma. J. Neurosurg. 68(6), 835–853 (1988)

    Article  Google Scholar 

  13. Achrol, A.S., et al.: Brain metastases. Nature Reviews Disease Primers 5(1), 5 (2019)

    Article  Google Scholar 

  14. Batchelor, T., Loeffler, J.S.: Primary cns lymphoma. J. Clin. Oncol. 24(8), 1281–1288 (2006)

    Article  Google Scholar 

  15. McAvoy, M., et al.: Classification of glioblastoma versus primary central nervous system lymphoma using convolutional neural networks. Sci. Rep. 11(1), 15219 (2021)

    Article  Google Scholar 

  16. Bathla, G., et al.: Ai-based classification of three common malignant tumors in neuro-oncology: a multi-institutional comparison of machine learning and deep learning methods. J. Neuroradiol. (2023)

    Google Scholar 

  17. Tariciotti, L., Ferlito, D., Caccavella, V.M., Di Cristofori, A., Fiore, G., Remore, L.G., Giordano, M., Remoli, G., Bertani, G., Borsa, S., et al.: A deep learning model for preoperative differentiation of glioblastoma, brain metastasis, and primary central nervous system lymphoma: An external validation study. NeuroSci 4(1), 18–30 (2022)

    Article  Google Scholar 

  18. Usinskiene, J., et al.: Optimal differentiation of high-and low-grade glioma and metastasis: a meta-analysis of perfusion, diffusion, and spectroscopy metrics. Neuroradiology 58, 339–350 (2016)

    Article  Google Scholar 

  19. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  20. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  21. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 510–519 (2019)

    Google Scholar 

  22. Qin, Z., Zhang, P., Wu, F., Li, X.: Fcanet: frequency channel attention networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 783–792 (2021)

    Google Scholar 

  23. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 100(1), 90–93 (1974)

    Article  MathSciNet  Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  25. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  26. Tan, M., Le, Q.: Efficientnetv2: smaller models and faster training. In: International Conference on Machine Learning, pp. 10096–10106. PMLR (2021)

    Google Scholar 

  27. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  29. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  30. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10428–10436 (2020)

    Google Scholar 

  31. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  32. Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik, A., Li, Y.: Maxvit: Multi-axis vision transformer. In: European conference on computer vision. pp. 459–479. Springer (2022)

    Google Scholar 

  33. Omeiza, D., Speakman, S., Cintas, C., Weldermariam, K.: Smooth grad-cam++: an enhanced inference level visualization technique for deep convolutional neural network models. arXiv preprint arXiv:1908.01224 (2019)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 62106222), the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ23F020008), the Foundation of medical and health technology of Zhejiang province, China (2023RC189) and the Zhejiang University-Angelalign Inc. R&D Center for Intelligent Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuozhu Liu or Junhui Lv .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no relevant conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hong, C., Wang, H., Wu, Z., Liu, Z., Lv, J. (2025). FoTNet Enables Preoperative Differentiation of Malignant Brain Tumors with Deep Learning. In: Ali, S., van der Sommen, F., Papież, B.W., Ghatwary, N., Jin, Y., Kolenbrander, I. (eds) Cancer Prevention, Detection, and Intervention. CaPTion 2024. Lecture Notes in Computer Science, vol 15199. Springer, Cham. https://doi.org/10.1007/978-3-031-73376-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73376-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73375-8

  • Online ISBN: 978-3-031-73376-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics