Abstract
Recognizing and disentangling visual attributes from objects is a foundation to many computer vision applications. While large vision-language representations like CLIP had largely resolved the task of zero-shot object recognition, zero-shot visual attribute recognition remains a challenge because CLIP’s contrastively-learned vision-language representation cannot effectively capture object-attribute dependencies. In this paper, we target this weakness and propose a sentence generation-based retrieval formulation for attribute recognition that is novel in 1) explicitly modeling a to-be-measured and retrieved object-attribute relation as a conditional probability graph, which converts the recognition problem into a dependency-sensitive language-modeling problem, and 2) applying a large pretrained Vision-Language Model (VLM) on this reformulation and naturally distilling its knowledge of image-object-attribute relations to use towards attribute recognition. Specifically, for each attribute to be recognized on an image, we measure the visual-conditioned probability of generating a short sentence encoding the attribute’s relation to objects on the image. Unlike contrastive retrieval, which measures likelihood by globally aligning elements of the sentence to the image, generative retrieval is sensitive to the order and dependency of objects and attributes in the sentence. We demonstrate through experiments that generative retrieval consistently outperforms contrastive retrieval on two visual reasoning datasets, Visual Attribute in the Wild (VAW), and our newly-proposed Visual Genome Attribute Ranking (VGARank).
W. Y. Zhu and K. Ye—Equal contribution.
J. Yu—Work done at Google.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, H., et al.: Nocaps: novel object captioning at scale. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019
Al-Halah, Z., Tapaswi, M., Stiefelhagen, R.: Recovering the missing link: predicting class-attribute associations for unsupervised zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5975–5984 (2016)
Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Antol, S., et al.: VQA: visual question answering. In: International Conference on Computer Vision (ICCV) (2015)
Bao, H., et al.: VLMO: unified vision-language pre-training with mixture-of-modality-experts. Adv. Neural Inf. Process. Syst. 35, 32897–32912 (2022)
Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. In: Advances in Neural Information Processing Systems, vol. 13 (2000)
Chen, K., et al.: OvarNet: towards open-vocabulary object attribute recognition. arXiv preprint arXiv:2301.09506 (2023)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chen, S., Grauman, K.: Compare and contrast: learning prominent visual differences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1267–1276 (2018)
Chen, X., et al.: PaLI-X: on scaling up a multilingual vision and language model. arXiv preprint arXiv:2305.18565 (2023)
Chen, X., et al.: PaLI: a jointly-scaled multilingual language-image model. arXiv preprint arXiv:2209.06794 (2022)
Chen, X., et al.: Microsoft COCO captions: data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)
Chen, Y.C., et al.: UNITER: learning universal image-text representations. In: European Conference on Computer Vision (ECCV) (2020)
Chen, Z.M., Wei, X.S., Wang, P., Guo, Y.: Multi-label image recognition with graph convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Chowdhery, A., et al.: PaLM: scaling language modeling with pathways. arXiv preprint arXiv:2204.02311 (2022)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota, June 2019. https://doi.org/10.18653/v1/N19-1423, https://aclanthology.org/N19-1423
Durand, T., Mehrasa, N., Mori, G.: Learning a deep convnet for multi-label classification with partial labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1778–1785. IEEE (2009)
Ferrari, V., Zisserman, A.: Learning visual attributes. In: Advances in Neural Information Processing Systems, vol. 20 (2007)
Frome, A., et al.: DeViSE: a deep visual-semantic embedding model. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 26. Curran Associates, Inc. (2013). https://proceedings.neurips.cc/paper_files/paper/2013/file/7cce53cf90577442771720a370c3c723-Paper.pdf
Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in VQA matter: elevating the role of image understanding in visual question answering. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision and language knowledge distillation. arXiv preprint arXiv:2104.13921 (2021)
He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: The IEEE International Conference on Computer Vision (ICCV), October 2017
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016
Jayaraman, D., Grauman, K.: Zero-shot recognition with unreliable attributes. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning, pp. 4904–4916. PMLR (2021)
Jiang, H., Misra, I., Rohrbach, M., Learned-Miller, E., Chen, X.: In defense of grid features for visual question answering. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020
Johnson, J., et al.: Image retrieval using scene graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015
Kim, W., Son, B., Kim, I.: ViLT: vision-and-language transformer without convolution or region supervision. In: International Conference on Machine Learning, pp. 5583–5594. PMLR (2021)
Kolesnikov, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (ICLR) (2021)
Kovashka, A., Parikh, D., Grauman, K.: WhittleSearch: image search with relative attribute feedback. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2973–2980. IEEE (2012)
Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123, 32–73 (2017)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)
Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–958. IEEE (2009)
Li, X., et al.: OSCAR: object-semantics aligned pre-training for vision-language tasks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision – ECCV 2020. ECCV 2020. LNCS, vol. 12375, pp. 121–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_8
Li, Y., Song, Y., Luo, J.: Improving pairwise ranking for multi-label image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017
Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. ECCV 2016. LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_51
Ma, H., et al.: EI-CLIP: entity-aware interventional contrastive learning for e-commerce cross-modal retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18051–18061, June 2022
Materzyńska, J., Torralba, A., Bau, D.: Disentangling visual and written concepts in clip. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16410–16419, June 2022
Misra, I., Gupta, A., Hebert, M.: From red wine to red tomato: composition with context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017
Naeem, M.F., Xian, Y., Tombari, F., Akata, Z.: Learning graph embeddings for compositional zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 953–962, June 2021
Nagarajan, T., Grauman, K.: Attributes as operators: factorizing unseen attribute-object compositions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. ECCV 2018. LNCS, vol. 11205, pp. 169–185. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_11
Nan, Z., Liu, Y., Zheng, N., Zhu, S.C.: Recognizing unseen attribute-object pair with generative model. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8811–8818 (2019)
OpenAI: GPT-4 technical report (2023)
Parikh, D., Grauman, K.: Relative attributes. In: 2011 International Conference on Computer Vision, pp. 503–510. IEEE (2011)
Patterson, G., Hays, J.: COCO attributes: attributes for people, animals, and objects. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016, Proceedings, Part VI 14, pp. 85–100. Springer, Cham (2016)
Pham, K., et al.: Learning to predict visual attributes in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13018–13028, June 2021
Pham, K., et al.: Improving closed and open-vocabulary attribute prediction using transformers. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13685, pp. 201–219. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19806-9_12
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)
Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)
Rao, Y., et al: DenseClip: language-guided dense prediction with context-aware prompting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18082–18091, June 2022
Reddy, S., Chen, D., Manning, C.D.: CoQA: a conversational question answering challenge. Trans. Assoc. Comput. Linguist. 7, 249–266 (2019)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III 18, pp. 234–241. Springer, Cham (2015)
Sarafianos, N., Xu, X., Kakadiaris, I.A.: Deep imbalanced attribute classification using visual attention aggregation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. ECCV 2018. LNCS, vol. 11215, pp. 680–697. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_42
Schuhmann, C., et al.: LAION-5B: an open large-scale dataset for training next generation image-text models. In: Advances in Neural Information Processing Systems (NeurIPS) (2022)
Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2556–2565. Association for Computational Linguistics, Melbourne, Australia, July 2018. https://doi.org/10.18653/v1/P18-1238, https://aclanthology.org/P18-1238
Shi, H., Hayat, M., Wu, Y., Cai, J.: ProposalClip: unsupervised open-category object proposal generation via exploiting clip cues. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9611–9620, June 2022
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1409.1556
Sohn, K.: Improved deep metric learning with multi-class N-pair loss objective. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Tan, H., Bansal, M.: LXMERT: learning cross-modality encoder representations from transformers. arXiv preprint arXiv:1908.07490 (2019)
Thoppilan, R., et al.: LaMDA: language models for dialog applications. arXiv preprint arXiv:2201.08239 (2022)
Tsimpoukelli, M., Menick, J.L., Cabi, S., Eslami, S., Vinyals, O., Hill, F.: Multimodal few-shot learning with frozen language models. Adv. Neural Inf. Process. Syst. 34, 200–212 (2021)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wang, Y., Wang, S., Tang, J., Liu, H., Li, B.: PPP: joint pointwise and pairwise image label prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016
Wang, Z., et al.: CRIS: CLIP-driven referring image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11686–11695, June 2022
Wang, Z., Yu, J., Yu, A.W., Dai, Z., Tsvetkov, Y., Cao, Y.: SimVLM: simple visual language model pretraining with weak supervision. arXiv preprint arXiv:2108.10904 (2021)
Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057. PMLR (2015)
Yang, Y., Yih, W.T., Meek, C.: WikiQA: a challenge dataset for open-domain question answering. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2013–2018 (2015)
Yao, Y., Zhang, A., Zhang, Z., Liu, Z., Chua, T.S., Sun, M.: CPT: colorful prompt tuning for pre-trained vision-language models. arXiv preprint arXiv:2109.11797 (2021)
Young, P., Lai, A., Hodosh, M., Hockenmaier, J.: From image descriptions to visual denotations: new similarity metrics for semantic inference over event descriptions. Trans. Assoc. Comput. Linguist. 2, 67–78 (2014). https://doi.org/10.1162/tacl_a_00166, https://aclanthology.org/Q14-1006
Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 192–199 (2014)
Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini, M., Wu, Y.: COCA: contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917 (2022)
Zhang, P., Goyal, Y., Summers-Stay, D., Batra, D., Parikh, D.: Yin and Yang: balancing and answering binary visual questions. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Zhang, P., et al.: VinVL: revisiting visual representations in vision-language models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5579–5588, June 2021
Zhong, Y., et al.: RegionClip: region-based language-image pretraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16793–16803, June 2022
Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Conditional prompt learning for vision-language models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16816–16825, June 2022
Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. Int. J. Comput. Vision 130(9), 2337–2348 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhu, W.Y. et al. (2025). ArtVLM: Attribute Recognition Through Vision-Based Prefix Language Modeling. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15085. Springer, Cham. https://doi.org/10.1007/978-3-031-73383-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-73383-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73382-6
Online ISBN: 978-3-031-73383-3
eBook Packages: Computer ScienceComputer Science (R0)