Skip to main content

Bidirectional Uncertainty-Based Active Learning for Open-Set Annotation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Active learning (AL) in open set scenarios presents a novel challenge of identifying the most valuable examples in an unlabeled data pool that comprises data from both known and unknown classes. Traditional methods prioritize selecting informative examples with low confidence, with the risk of mistakenly selecting unknown-class examples with similarly low confidence. Recent methods favor the most probable known-class examples, with the risk of picking simple already mastered examples. In this paper, we attempt to query examples that are both likely from known classes and highly informative, and propose a Bidirectional Uncertainty-based Active Learning (BUAL) framework. Specifically, we achieve this by first pushing the unknown class examples toward regions with high-confidence predictions, i.e., the proposed Random Label Negative Learning method. Then, we propose a Bidirectional Uncertainty sampling strategy by jointly estimating uncertainty posed by both positive and negative learning to perform consistent and stable sampling. BUAL successfully extends existing uncertainty-based AL methods to complex open-set scenarios. Extensive experiments on multiple datasets with varying openness demonstrate that BUAL achieves state-of-the-art performance. The code is available at this link.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint arXiv:1906.03671 (2019)

  2. Balcan, M.-F., Broder, A., Zhang, T.: Margin based active learning. In: Bshouty, N.H., Gentile, C. (eds.) COLT 2007. LNCS (LNAI), vol. 4539, pp. 35–50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72927-3_5

    Chapter  Google Scholar 

  3. Du, P., Zhao, S., Chen, H., Chai, S., Chen, H., Li, C.: Contrastive coding for active learning under class distribution mismatch. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8927–8936 (2021)

    Google Scholar 

  4. Feng, L., Kaneko, T., Han, B., Niu, G., An, B., Sugiyama, M.: Learning with multiple complementary labels. In: International Conference on Machine Learning, pp. 3072–3081. PMLR (2020)

    Google Scholar 

  5. Fu, Y., Zhu, X., Li, B.: A survey on instance selection for active learning. Knowl. Inf. Syst. 35(2), 249–283 (2013)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Holub, A., Perona, P., Burl, M.C.: Entropy-based active learning for object recognition. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8. IEEE (2008)

    Google Scholar 

  8. Huang, S.J., Jin, R., Zhou, Z.H.: Active learning by querying informative and representative examples. Adv. Neural Inf. Process. Syst. 23 (2010)

    Google Scholar 

  9. Huang, S.J., Zong, C.C., Ning, K.P., Ye, H.B.: Asynchronous active learning with distributed label querying. In: IJCAI, pp. 2570–2576 (2021)

    Google Scholar 

  10. Ishida, T., Niu, G., Hu, W., Sugiyama, M.: Learning from complementary labels. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  11. Kim, Y., Yim, J., Yun, J., Kim, J.: NLNL: negative learning for noisy labels. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 101–110 (2019)

    Google Scholar 

  12. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25 (2012)

    Google Scholar 

  14. Lee, J.-H., Astrid, M., Zaheer, M.Z., Lee, S.-I.: Deep visual anomaly detection with negative learning. In: Jeong, H., Sumi, K. (eds.) IW-FCV 2021. CCIS, vol. 1405, pp. 218–232. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81638-4_18

    Chapter  Google Scholar 

  15. Li, M., Sethi, I.K.: Confidence-based active learning. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1251–1261 (2006)

    Article  Google Scholar 

  16. Luo, X., Chen, W., Tan, Y., Li, C., He, Y., Jia, X.: Exploiting negative learning for implicit pseudo label rectification in source-free domain adaptive semantic segmentation. arXiv preprint arXiv:2106.12123 (2021)

  17. Mahmood, R., Fidler, S., Law, M.T.: Low budget active learning via Wasserstein distance: an integer programming approach. arXiv preprint arXiv:2106.02968 (2021)

  18. Moon, W., Park, J., Seong, H.S., Cho, C.H., Heo, J.P.: Difficulty-aware simulator for open set recognition. arXiv preprint arXiv:2207.10024 (2022)

  19. Ning, K.P., Tao, L., Chen, S., Huang, S.J.: Improving model robustness by adaptively correcting perturbation levels with active queries. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 9161–9169 (2021)

    Google Scholar 

  20. Ning, K.P., Zhao, X., Li, Y., Huang, S.J.: Active learning for open-set annotation. arXiv preprint arXiv:2201.06758 (2022)

  21. Ren, P., et al.: A survey of deep active learning. ACM Comput. Surv. (CSUR) 54(9), 1–40 (2021)

    Article  Google Scholar 

  22. Roy, N., McCallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: International Conference On Machine Learning (2001)

    Google Scholar 

  23. Salehi, M., Mirzaei, H., Hendrycks, D., Li, Y., Rohban, M.H., Sabokrou, M.: A unified survey on anomaly, novelty, open-set, and out-of-distribution detection: Solutions and future challenges. arXiv preprint arXiv:2110.14051 (2021)

  24. Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1757–1772 (2012)

    Article  Google Scholar 

  25. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. arXiv preprint arXiv:1708.00489 (2017)

  26. Settles, B.: Active learning literature survey (2009)

    Google Scholar 

  27. Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5972–5981 (2019)

    Google Scholar 

  28. Yao, L., Miller, J.: Tiny imagenet classification with convolutional neural networks. CS 231N 2(5), 8 (2015)

    Google Scholar 

  29. Yoo, D., Kweon, I.S.: Learning loss for active learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 93–102 (2019)

    Google Scholar 

  30. You, X., Wang, R., Tao, D.: Diverse expected gradient active learning for relative attributes. IEEE Trans. Image Process. 23(7), 3203–3217 (2014)

    Article  MathSciNet  Google Scholar 

  31. Yu, X., Liu, T., Gong, M., Tao, D.: Learning with biased complementary labels. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 69–85. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_5

    Chapter  Google Scholar 

  32. Zong, C.C., et al.: Noise-robust bidirectional learning with dynamic sample reweighting. arXiv preprint arXiv:2209.01334 (2022)

  33. Zong, C.C., Wang, Y.W., Xie, M.K., Huang, S.J.: Dirichlet-based prediction calibration for learning with noisy labels. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 17254–17262 (2024)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province of China (BK20222012, BK20211517), the National Key R&D Program of China (2020AAA0107000), and NSFC (62222605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Jun Huang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5872 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zong, CC., Wang, YW., Ning, KP., Ye, HB., Huang, SJ. (2025). Bidirectional Uncertainty-Based Active Learning for Open-Set Annotation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15086. Springer, Cham. https://doi.org/10.1007/978-3-031-73390-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73390-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73389-5

  • Online ISBN: 978-3-031-73390-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics