Skip to main content

Decoupling Common and Unique Representations for Multimodal Self-supervised Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

The increasing availability of multi-sensor data sparks wide interest in multimodal self-supervised learning. However, most existing approaches learn only common representations across modalities while ignoring intra-modal training and modality-unique representations. We propose Decoupling Common and Unique Representations (DeCUR), a simple yet effective method for multimodal self-supervised learning. By distinguishing inter- and intra-modal embeddings through multimodal redundancy reduction, DeCUR can integrate complementary information across different modalities. We evaluate DeCUR in three common multimodal scenarios (radar-optical, RGB-elevation, and RGB-depth), and demonstrate its consistent improvement regardless of architectures and for both multimodal and modality-missing settings. With thorough experiments and comprehensive analysis, we hope this work can provide valuable insights and raise more interest in researching the hidden relationships of multimodal representations (https://github.com/zhu-xlab/DeCUR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akbari, H., et al.: VATT: transformers for multimodal self-supervised learning from raw video, audio and text. In: Advances in Neural Information Processing Systems, vol. 34, pp. 24206–24221 (2021)

    Google Scholar 

  2. Baier, G., Deschemps, A., Schmitt, M., Yokoya, N.: GeoNRW (2020). https://doi.org/10.21227/s5xq-b822

  3. Bardes, A., Ponce, J., LeCun, Y.: VICReg: variance-invariance-covariance regularization for self-supervised learning. arXiv preprint arXiv:2105.04906 (2021)

  4. Cao, J., Leng, H., Lischinski, D., Cohen-Or, D., Tu, C., Li, Y.: ShapeConv: shape-aware convolutional layer for indoor RGB-D semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7088–7097 (2021)

    Google Scholar 

  5. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: Advances in Neural Information Processing Systems, vol. 33, pp. 9912–9924 (2020)

    Google Scholar 

  6. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)

    Google Scholar 

  7. Chen, L.Z., Lin, Z., Wang, Z., Yang, Y.L., Cheng, M.M.: Spatial information guided convolution for real-time RGBD semantic segmentation. IEEE Trans. Image Process. 30, 2313–2324 (2021)

    Article  Google Scholar 

  8. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  9. Chen, X., et al.: Bi-directional cross-modality feature propagation with separation-and-aggregation gate for RGB-D semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 561–577. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_33

    Chapter  Google Scholar 

  10. Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  11. Cong, Y., et al.: SatMAE: pre-training transformers for temporal and multi-spectral satellite imagery. In: Advances in Neural Information Processing Systems, vol. 35, pp. 197–211 (2022)

    Google Scholar 

  12. Dunteman, G.H.: Principal Components Analysis, vol. 69. Sage (1989)

    Google Scholar 

  13. Ericsson, L., Gouk, H., Loy, C.C., Hospedales, T.M.: Self-supervised representation learning: introduction, advances, and challenges. IEEE Signal Process. Mag. 39(3), 42–62 (2022)

    Article  Google Scholar 

  14. Fuller, A., Millard, K., Green, J.: Croma: remote sensing representations with contrastive radar-optical masked autoencoders. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

  15. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

  16. Girdhar, R., et al.: ImageBind: one embedding space to bind them all. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15180–15190, June 2023

    Google Scholar 

  17. Girdhar, R., Singh, M., Ravi, N., van der Maaten, L., Joulin, A., Misra, I.: OMNIVORE: a single model for many visual modalities. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16102–16112, June 2022

    Google Scholar 

  18. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21271–21284 (2020)

    Google Scholar 

  19. Guo, X., et al.: SkySense: a multi-modal remote sensing foundation model towards universal interpretation for earth observation imagery. arXiv preprint arXiv:2312.10115 (2023)

  20. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGB-D images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345–360. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_23

    Chapter  Google Scholar 

  21. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  22. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  24. Hong, D., et al.: SpectralGPT: spectral foundation model. arXiv preprint arXiv:2311.07113 (2023)

  25. Krishnan, R., Rajpurkar, P., Topol, E.J.: Self-supervised learning in medicine and healthcare. Nat. Biomed. Eng. 6(12), 1346–1352 (2022)

    Article  Google Scholar 

  26. Liang, P.P., Deng, Z., Ma, M.Q., Zou, J.Y., Morency, L.P., Salakhutdinov, R.: Factorized contrastive learning: going beyond multi-view redundancy. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

  27. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  28. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  29. Manas, O., Lacoste, A., Giró-i Nieto, X., Vazquez, D., Rodriguez, P.: Seasonal contrast: unsupervised pre-training from uncurated remote sensing data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9414–9423 (2021)

    Google Scholar 

  30. Mendieta, M., Han, B., Shi, X., Zhu, Y., Chen, C.: Towards geospatial foundation models via continual pretraining. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16806–16816 (2023)

    Google Scholar 

  31. Mu, N., Kirillov, A., Wagner, D., Xie, S.: SLIP: self-supervision meets language-image pre-training. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13686, pp. 529–544. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19809-0_30

    Chapter  Google Scholar 

  32. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  33. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  34. Peng, X., Wei, Y., Deng, A., Wang, D., Hu, D.: Balanced multimodal learning via on-the-fly gradient modulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8238–8247 (2022)

    Google Scholar 

  35. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  36. Scheibenreif, L., Hanna, J., Mommert, M., Borth, D.: Self-supervised vision transformers for land-cover segmentation and classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1422–1431 (2022)

    Google Scholar 

  37. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  38. Song, S., Lichtenberg, S.P., Xiao, J.: Sun RGB-D: a RGB-D scene understanding benchmark suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 567–576 (2015)

    Google Scholar 

  39. Sumbul, G., et al.: BigEarthNet-MM: a large-scale, multimodal, multilabel benchmark archive for remote sensing image classification and retrieval [software and data sets]. IEEE Geosci. Remote Sens. Mag. 9(3), 174–180 (2021)

    Article  Google Scholar 

  40. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)

    Google Scholar 

  41. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12) (2010)

    Google Scholar 

  42. Wang, L., Luc, P., Recasens, A., Alayrac, J.B., Oord, A.V.D.: Multimodal self-supervised learning of general audio representations. arXiv preprint arXiv:2104.12807 (2021)

  43. Wang, Y., Albrecht, C.M., Braham, N.A.A., Mou, L., Zhu, X.X.: Self-supervised learning in remote sensing: a review. arXiv preprint arXiv:2206.13188 (2022)

  44. Wang, Y., Albrecht, C.M., Zhu, X.X.: Self-supervised vision transformers for joint SAR-optical representation learning. In: IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, pp. 139–142. IEEE (2022)

    Google Scholar 

  45. Wang, Y., Braham, N.A.A., Xiong, Z., Liu, C., Albrecht, C.M., Zhu, X.X.: SSL4EO-S12: a large-scale multi-modal, multi-temporal dataset for self-supervised learning in earth observation. arXiv preprint arXiv:2211.07044 (2022)

  46. Wang, Y., Braham, N.A.A., Xiong, Z., Liu, C., Albrecht, C.M., Zhu, X.X.: SSL4EO-S12: a large-scale multimodal, multitemporal dataset for self-supervised learning in earth observation [software and data sets]. IEEE Geosci. Remote Sens. Mag. 11(3), 98–106 (2023)

    Article  Google Scholar 

  47. Wang, Y., Hernández, H.H., Albrecht, C.M., Zhu, X.X.: Feature guided masked autoencoder for self-supervised learning in remote sensing. arXiv preprint arXiv:2310.18653 (2023)

  48. Wei, L., Xie, L., Zhou, W., Li, H., Tian, Q.: MVP: multimodality-guided visual pre-training. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13690, pp. 337–353. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20056-4_20

    Chapter  Google Scholar 

  49. Xia, Z., Pan, X., Song, S., Li, L.E., Huang, G.: Vision transformer with deformable attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4794–4803 (2022)

    Google Scholar 

  50. Xia, Z., Pan, X., Song, S., Li, L.E., Huang, G.: DAT++: spatially dynamic vision transformer with deformable attention. arXiv preprint arXiv:2309.01430 (2023)

  51. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: Advances in Neural Information Processing Systems, vol. 34, pp. 12077–12090 (2021)

    Google Scholar 

  52. Xiong, Z., et al.: Neural plasticity-inspired foundation model for observing the earth crossing modalities. arXiv preprint arXiv:2403.15356 (2024)

  53. Xiong, Z., Wang, Y., Zhang, F., Zhu, X.X.: One for all: toward unified foundation models for earth vision. arXiv preprint arXiv:2401.07527 (2024)

  54. Xiong, Z., Yuan, Y., Wang, Q.: MSN: modality separation networks for RGB-D scene recognition. Neurocomputing 373, 81–89 (2020)

    Article  Google Scholar 

  55. Xiong, Z., Yuan, Y., Wang, Q.: ASK: adaptively selecting key local features for RGB-D scene recognition. IEEE Trans. Image Process. 30, 2722–2733 (2021)

    Article  Google Scholar 

  56. Yang, J., et al.: Vision-language pre-training with triple contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15671–15680 (2022)

    Google Scholar 

  57. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow Twins: self-supervised learning via redundancy reduction. In: International Conference on Machine Learning, pp. 12310–12320. PMLR (2021)

    Google Scholar 

  58. Zhang, J., Liu, H., Yang, K., Hu, X., Liu, R., Stiefelhagen, R.: CMX: cross-modal fusion for RGB-X semantic segmentation with transformers. arXiv preprint arXiv:2203.04838 (2022)

  59. Zhou, J., Yu, Q., Luo, C., Zhang, J.: Feature decomposition for reducing negative transfer: a novel multi-task learning method for recommender system. arXiv preprint arXiv:2302.05031 (2023)

Download references

Acknowledgement

The main work of Y. Wang, C. Liu, and C. Albrecht was funded by the Helmholtz Association through the Framework of Helmholtz AI, grant ID: ZT-I-PF-5-01 - Local Unit Munich Unit @Aeronautics, Space and Transport (MASTr). The compute was supported by the Helmholtz Association’s Initiative and Networking Fund on the HAICORE@FZJ partition. The work of N. Ait Ali Braham was supported by the European Commission through the project “EvoLand” under the Horizon 2020 Research and Innovation program (Grant Agreement No. 101082130). The work of X. Zhu was supported by the German Federal Ministry of Education and Research (BMBF) in the framework of the international future AI lab “AI4EO – Artificial Intelligence for Earth Observation: Reasoning, Uncertainties, Ethics and Beyond” (grant number: 01DD20001) and by the Munich Center for Machine Learning. The work of Z. Xiong was supported by the German Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) based on a resolution of the German Bundestag (grant number: 67KI32002B; Acronym: EKAPEx). Y. Wang’s work on rebuttal and camera-ready paper preparation was supported by the European Commission through the project “ThinkingEarth-Copernicus Foundation Models for a Thinking Earth” under the Horizon 2020 Research and Innovation program (Grant Agreement No. 101130544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 401 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Albrecht, C.M., Braham, N.A.A., Liu, C., Xiong, Z., Zhu, X.X. (2025). Decoupling Common and Unique Representations for Multimodal Self-supervised Learning. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15087. Springer, Cham. https://doi.org/10.1007/978-3-031-73397-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73397-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73396-3

  • Online ISBN: 978-3-031-73397-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics