Abstract
The increasing availability of multi-sensor data sparks wide interest in multimodal self-supervised learning. However, most existing approaches learn only common representations across modalities while ignoring intra-modal training and modality-unique representations. We propose Decoupling Common and Unique Representations (DeCUR), a simple yet effective method for multimodal self-supervised learning. By distinguishing inter- and intra-modal embeddings through multimodal redundancy reduction, DeCUR can integrate complementary information across different modalities. We evaluate DeCUR in three common multimodal scenarios (radar-optical, RGB-elevation, and RGB-depth), and demonstrate its consistent improvement regardless of architectures and for both multimodal and modality-missing settings. With thorough experiments and comprehensive analysis, we hope this work can provide valuable insights and raise more interest in researching the hidden relationships of multimodal representations (https://github.com/zhu-xlab/DeCUR).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akbari, H., et al.: VATT: transformers for multimodal self-supervised learning from raw video, audio and text. In: Advances in Neural Information Processing Systems, vol. 34, pp. 24206–24221 (2021)
Baier, G., Deschemps, A., Schmitt, M., Yokoya, N.: GeoNRW (2020). https://doi.org/10.21227/s5xq-b822
Bardes, A., Ponce, J., LeCun, Y.: VICReg: variance-invariance-covariance regularization for self-supervised learning. arXiv preprint arXiv:2105.04906 (2021)
Cao, J., Leng, H., Lischinski, D., Cohen-Or, D., Tu, C., Li, Y.: ShapeConv: shape-aware convolutional layer for indoor RGB-D semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7088–7097 (2021)
Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: Advances in Neural Information Processing Systems, vol. 33, pp. 9912–9924 (2020)
Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)
Chen, L.Z., Lin, Z., Wang, Z., Yang, Y.L., Cheng, M.M.: Spatial information guided convolution for real-time RGBD semantic segmentation. IEEE Trans. Image Process. 30, 2313–2324 (2021)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Chen, X., et al.: Bi-directional cross-modality feature propagation with separation-and-aggregation gate for RGB-D semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 561–577. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_33
Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)
Cong, Y., et al.: SatMAE: pre-training transformers for temporal and multi-spectral satellite imagery. In: Advances in Neural Information Processing Systems, vol. 35, pp. 197–211 (2022)
Dunteman, G.H.: Principal Components Analysis, vol. 69. Sage (1989)
Ericsson, L., Gouk, H., Loy, C.C., Hospedales, T.M.: Self-supervised representation learning: introduction, advances, and challenges. IEEE Signal Process. Mag. 39(3), 42–62 (2022)
Fuller, A., Millard, K., Green, J.: Croma: remote sensing representations with contrastive radar-optical masked autoencoders. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)
Girdhar, R., et al.: ImageBind: one embedding space to bind them all. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15180–15190, June 2023
Girdhar, R., Singh, M., Ravi, N., van der Maaten, L., Joulin, A., Misra, I.: OMNIVORE: a single model for many visual modalities. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16102–16112, June 2022
Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21271–21284 (2020)
Guo, X., et al.: SkySense: a multi-modal remote sensing foundation model towards universal interpretation for earth observation imagery. arXiv preprint arXiv:2312.10115 (2023)
Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGB-D images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345–360. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_23
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hong, D., et al.: SpectralGPT: spectral foundation model. arXiv preprint arXiv:2311.07113 (2023)
Krishnan, R., Rajpurkar, P., Topol, E.J.: Self-supervised learning in medicine and healthcare. Nat. Biomed. Eng. 6(12), 1346–1352 (2022)
Liang, P.P., Deng, Z., Ma, M.Q., Zou, J.Y., Morency, L.P., Salakhutdinov, R.: Factorized contrastive learning: going beyond multi-view redundancy. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)
Manas, O., Lacoste, A., Giró-i Nieto, X., Vazquez, D., Rodriguez, P.: Seasonal contrast: unsupervised pre-training from uncurated remote sensing data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9414–9423 (2021)
Mendieta, M., Han, B., Shi, X., Zhu, Y., Chen, C.: Towards geospatial foundation models via continual pretraining. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16806–16816 (2023)
Mu, N., Kirillov, A., Wagner, D., Xie, S.: SLIP: self-supervision meets language-image pre-training. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13686, pp. 529–544. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19809-0_30
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Peng, X., Wei, Y., Deng, A., Wang, D., Hu, D.: Balanced multimodal learning via on-the-fly gradient modulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8238–8247 (2022)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Scheibenreif, L., Hanna, J., Mommert, M., Borth, D.: Self-supervised vision transformers for land-cover segmentation and classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1422–1431 (2022)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Song, S., Lichtenberg, S.P., Xiao, J.: Sun RGB-D: a RGB-D scene understanding benchmark suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 567–576 (2015)
Sumbul, G., et al.: BigEarthNet-MM: a large-scale, multimodal, multilabel benchmark archive for remote sensing image classification and retrieval [software and data sets]. IEEE Geosci. Remote Sens. Mag. 9(3), 174–180 (2021)
Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12) (2010)
Wang, L., Luc, P., Recasens, A., Alayrac, J.B., Oord, A.V.D.: Multimodal self-supervised learning of general audio representations. arXiv preprint arXiv:2104.12807 (2021)
Wang, Y., Albrecht, C.M., Braham, N.A.A., Mou, L., Zhu, X.X.: Self-supervised learning in remote sensing: a review. arXiv preprint arXiv:2206.13188 (2022)
Wang, Y., Albrecht, C.M., Zhu, X.X.: Self-supervised vision transformers for joint SAR-optical representation learning. In: IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, pp. 139–142. IEEE (2022)
Wang, Y., Braham, N.A.A., Xiong, Z., Liu, C., Albrecht, C.M., Zhu, X.X.: SSL4EO-S12: a large-scale multi-modal, multi-temporal dataset for self-supervised learning in earth observation. arXiv preprint arXiv:2211.07044 (2022)
Wang, Y., Braham, N.A.A., Xiong, Z., Liu, C., Albrecht, C.M., Zhu, X.X.: SSL4EO-S12: a large-scale multimodal, multitemporal dataset for self-supervised learning in earth observation [software and data sets]. IEEE Geosci. Remote Sens. Mag. 11(3), 98–106 (2023)
Wang, Y., Hernández, H.H., Albrecht, C.M., Zhu, X.X.: Feature guided masked autoencoder for self-supervised learning in remote sensing. arXiv preprint arXiv:2310.18653 (2023)
Wei, L., Xie, L., Zhou, W., Li, H., Tian, Q.: MVP: multimodality-guided visual pre-training. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13690, pp. 337–353. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20056-4_20
Xia, Z., Pan, X., Song, S., Li, L.E., Huang, G.: Vision transformer with deformable attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4794–4803 (2022)
Xia, Z., Pan, X., Song, S., Li, L.E., Huang, G.: DAT++: spatially dynamic vision transformer with deformable attention. arXiv preprint arXiv:2309.01430 (2023)
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: Advances in Neural Information Processing Systems, vol. 34, pp. 12077–12090 (2021)
Xiong, Z., et al.: Neural plasticity-inspired foundation model for observing the earth crossing modalities. arXiv preprint arXiv:2403.15356 (2024)
Xiong, Z., Wang, Y., Zhang, F., Zhu, X.X.: One for all: toward unified foundation models for earth vision. arXiv preprint arXiv:2401.07527 (2024)
Xiong, Z., Yuan, Y., Wang, Q.: MSN: modality separation networks for RGB-D scene recognition. Neurocomputing 373, 81–89 (2020)
Xiong, Z., Yuan, Y., Wang, Q.: ASK: adaptively selecting key local features for RGB-D scene recognition. IEEE Trans. Image Process. 30, 2722–2733 (2021)
Yang, J., et al.: Vision-language pre-training with triple contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15671–15680 (2022)
Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow Twins: self-supervised learning via redundancy reduction. In: International Conference on Machine Learning, pp. 12310–12320. PMLR (2021)
Zhang, J., Liu, H., Yang, K., Hu, X., Liu, R., Stiefelhagen, R.: CMX: cross-modal fusion for RGB-X semantic segmentation with transformers. arXiv preprint arXiv:2203.04838 (2022)
Zhou, J., Yu, Q., Luo, C., Zhang, J.: Feature decomposition for reducing negative transfer: a novel multi-task learning method for recommender system. arXiv preprint arXiv:2302.05031 (2023)
Acknowledgement
The main work of Y. Wang, C. Liu, and C. Albrecht was funded by the Helmholtz Association through the Framework of Helmholtz AI, grant ID: ZT-I-PF-5-01 - Local Unit Munich Unit @Aeronautics, Space and Transport (MASTr). The compute was supported by the Helmholtz Association’s Initiative and Networking Fund on the HAICORE@FZJ partition. The work of N. Ait Ali Braham was supported by the European Commission through the project “EvoLand” under the Horizon 2020 Research and Innovation program (Grant Agreement No. 101082130). The work of X. Zhu was supported by the German Federal Ministry of Education and Research (BMBF) in the framework of the international future AI lab “AI4EO – Artificial Intelligence for Earth Observation: Reasoning, Uncertainties, Ethics and Beyond” (grant number: 01DD20001) and by the Munich Center for Machine Learning. The work of Z. Xiong was supported by the German Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) based on a resolution of the German Bundestag (grant number: 67KI32002B; Acronym: EKAPEx). Y. Wang’s work on rebuttal and camera-ready paper preparation was supported by the European Commission through the project “ThinkingEarth-Copernicus Foundation Models for a Thinking Earth” under the Horizon 2020 Research and Innovation program (Grant Agreement No. 101130544).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y., Albrecht, C.M., Braham, N.A.A., Liu, C., Xiong, Z., Zhu, X.X. (2025). Decoupling Common and Unique Representations for Multimodal Self-supervised Learning. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15087. Springer, Cham. https://doi.org/10.1007/978-3-031-73397-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-73397-0_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73396-3
Online ISBN: 978-3-031-73397-0
eBook Packages: Computer ScienceComputer Science (R0)