Skip to main content

Domain-Adaptive Video Deblurring via Test-Time Blurring

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15088))

Included in the following conference series:

  • 385 Accesses

Abstract

Dynamic scene video deblurring aims to remove undesirable blurry artifacts captured during the exposure process. Although previous video deblurring methods have achieved impressive results, they suffer from significant performance drops due to the domain gap between training and testing videos, especially for those captured in real-world scenarios. To address this issue, we propose a domain adaptation scheme based on a blurring model to achieve test-time fine-tuning for deblurring models in unseen domains. Since blurred and sharp pairs are unavailable for fine-tuning during inference, our scheme can generate domain-adaptive training pairs to calibrate a deblurring model for the target domain. First, a Relative Sharpness Detection Module is proposed to identify relatively sharp regions from the blurry input images and regard them as pseudo-sharp images. Next, we utilize a blurring model to produce blurred images based on the pseudo-sharp images extracted during testing. To synthesize blurred images in compliance with the target data distribution, we propose a Domain-adaptive Blur Condition Generation Module to create domain-specific blur conditions for the blurring model. Finally, the generated pseudo-sharp and blurred pairs are used to fine-tune a deblurring model for better performance. Extensive experimental results demonstrate that our approach can significantly improve state-of-the-art video deblurring methods, providing performance gains of up to 7.54dB on various real-world video deblurring datasets. The source code is available at https://github.com/Jin-Ting-He/DADeblur.

J.-T. He and F.-J. Tsai—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The authors from the universities in Taiwan completed the experiments on the datasets.

References

  1. https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_regionprops.html

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Chao, Z., Hang, D., Jinshan, P., Boyang, L., Yuhao, H., Lean, F., Fei, W.: Deep recurrent neural network with multi-scale bi-directional propagation for video deblurring. In: AAAI (2022)

    Google Scholar 

  4. Chen, C.F., Panda, R., Fan, Q.: RegionViT: regional-to-local attention for vision transformers. In: ICLR (2022)

    Google Scholar 

  5. Chen, L., et al.: Deliberated domain bridging for domain adaptive semantic segmentation. In: NeurIPS (2022)

    Google Scholar 

  6. Chi, Z., Wang, Y., Yu, Y., Tang, J.: Test-time fast adaptation for dynamic scene deblurring via meta-auxiliary learning. In: CVPR (2021)

    Google Scholar 

  7. Cho, S.J., Ji, S.W., Hong, J.P., Jung, S.W., Ko, S.J.: Rethinking coarse-to-fine approach in single image deblurring. In: ICCV (2021)

    Google Scholar 

  8. Chu, X., et al.: Twins: revisiting the design of spatial attention in vision transformers. In: NeurIPS (2021)

    Google Scholar 

  9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv (2018)

    Google Scholar 

  10. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: NeurIPS (2021)

    Google Scholar 

  11. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  12. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  13. Gao, H., Tao, X., Shen, X., Jia, J.: Dynamic scene deblurring with parameter selective sharing and nested skip connections. In: CVPR (2019)

    Google Scholar 

  14. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS (2020)

    Google Scholar 

  15. Hoyer, L., Dai, D., Van Gool, L.: HRDA: context-aware high-resolution domain-adaptive semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13690, pp. 372–391. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20056-4_22

    Chapter  Google Scholar 

  16. Ji, B., Yao, A.: Multi-scale memory-based video deblurring. In: CVPR (2022)

    Google Scholar 

  17. Jiang, B., Xie, Z., Xia, Z., Li, S., Liu, S.: ERDN: equivalent receptive field deformable network for video deblurring. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13678, pp. 663–678. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19797-0_38

    Chapter  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2017)

    Google Scholar 

  19. Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better. In: ICCV (2019)

    Google Scholar 

  20. Lai, X., et al.: DecoupleNet: decoupled network for domain adaptive semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13693, pp. 369–387. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_22

    Chapter  Google Scholar 

  21. Li, D., et al.: A simple baseline for video restoration with grouped spatial-temporal shift. In: CVPR (2023)

    Google Scholar 

  22. Li, D., et al.: ARVo: learning all-range volumetric correspondence for video deblurring. In: CVPR (2021)

    Google Scholar 

  23. Li, W., Liu, X., Yuan, Y.: SIGMA: semantic-complete graph matching for domain adaptive object detection. In: CVPR (2022)

    Google Scholar 

  24. Li, Y.J., et al.: Cross-domain adaptive teacher for object detection. In: CVPR (2022)

    Google Scholar 

  25. Liang, J., et al.: VRT: a video restoration transformer. In: arXiv (2022)

    Google Scholar 

  26. Liang, J., et al.: Recurrent video restoration transformer with guided deformable attention. In: NeurIPS (2022)

    Google Scholar 

  27. Liang, Z., Li, Z., Zhou, S., Li, C., Loy, C.C.: Control color: multimodal diffusion-based interactive image colorization. arXiv (2024)

    Google Scholar 

  28. Lin, J., et al.: Flow-guided sparse transformer for video deblurring. In: ICML (2022)

    Google Scholar 

  29. Liu, P.S., Tsai, F.J., Peng, Y.T., Tsai, C.C., Lin, C.W., Lin, Y.Y.: Meta transferring for deblurring. In: BMVC (2022)

    Google Scholar 

  30. Ma, J., Liang, J., Chen, C., Lu, H.: Subject-diffusion: open domain personalized text-to-image generation without test-time fine-tuning. arXiv (2023)

    Google Scholar 

  31. Meng, C., et al.: SDEdit: guided image synthesis and editing with stochastic differential equations. arXiv (2021)

    Google Scholar 

  32. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: CVPR (2017)

    Google Scholar 

  33. Nah, S., Son, S., Lee, J., Lee, K.M.: Clean images are hard to reblur: a new clue for deblurring. In: ICLR (2022)

    Google Scholar 

  34. Nah, S., Son, S., Lee, K.M.: Recurrent neural networks with intra-frame iterations for video deblurring. In: CVPR (2019)

    Google Scholar 

  35. Nichol, A., et al.: GLIDE: towards photorealistic image generation and editing with text-guided diffusion models. arXiv (2021)

    Google Scholar 

  36. Pan, J., Bai, H., Tang, J.: Cascaded deep video deblurring using temporal sharpness prior. In: CVPR (2020)

    Google Scholar 

  37. Pan, J., Xu, B., Dong, J., Ge, J., Tang, J.: Deep discriminative spatial and temporal network for efficient video deblurring. In: CVPR (2023)

    Google Scholar 

  38. Park, D., Kang, D.U., Kim, J., Chun, S.Y.: Multi-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal training. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 327–343. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_20

    Chapter  Google Scholar 

  39. Purohit, K., Rajagopalan, A.N.: Region-adaptive dense network for efficient motion deblurring. In: AAAI (2020)

    Google Scholar 

  40. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

    Google Scholar 

  41. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR 21, 1–67 (2020)

    MathSciNet  Google Scholar 

  42. Ramesh, A., et al.: Zero-shot text-to-image generation. In: ICML (2021)

    Google Scholar 

  43. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: ICCV (2021)

    Google Scholar 

  44. Rim, J., Lee, H., Won, J., Cho, S.: Real-world blur dataset for learning and benchmarking deblurring algorithms. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 184–201. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_12

    Chapter  Google Scholar 

  45. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. In: CVPR (2023)

    Google Scholar 

  46. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. In: NeurIPS (2022)

    Google Scholar 

  47. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: ICLR (2021)

    Google Scholar 

  48. Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video deblurring for hand-held cameras. In: CVPR (2017)

    Google Scholar 

  49. Suin, M., Purohit, K., Rajagopalan, A.N.: Spatially-attentive patch-hierarchical network for adaptive motion deblurring. In: CVPR (2020)

    Google Scholar 

  50. Suin, M., Rajagopalan, A.N.: Gated spatio-temporal attention-guided video deblurring. In: CVPR (2021)

    Google Scholar 

  51. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: CVPR (2018)

    Google Scholar 

  52. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  53. Tsai, F.J., Peng, Y.T., Lin, Y.Y., Tsai, C.C., Lin, C.W.: StripFormer: strip transformer for fast image deblurring. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13679, pp. 146–162. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19800-7_9

    Chapter  Google Scholar 

  54. Tsai, F.J., Peng, Y.T., Tsai, C.C., Lin, Y.Y., Lin, C.W.: BANet: a blur-aware attention network for dynamic scene deblurring. IEEE TIP 31, 6789–6799 (2022)

    Google Scholar 

  55. Voynov, A., Aberman, K., Cohen-Or, D.: Sketch-guided text-to-image diffusion models. In: SIGGRAPH (2023)

    Google Scholar 

  56. Wang, Y., Lu, Y., Gao, Y., Wang, L., Zhong, Z., Zheng, Y., Yamashita, A.: Efficient video deblurring guided by motion magnitude. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13679, pp. 413–429. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19800-7_24

    Chapter  Google Scholar 

  57. Wu, J.H., Tsai, F.J., Peng, Y.T., Tsai, C.C., Lin, C.W., Lin, Y.Y.: ID-Blau: image deblurring by implicit diffusion-based reblurring augmentation. In: CVPR (2024)

    Google Scholar 

  58. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: NeurIPS (2021)

    Google Scholar 

  59. Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch network for image deblurring. In: CVPR (2019)

    Google Scholar 

  60. Zhang, H., Xie, H., Yao, H.: Spatio-temporal deformable attention network for video deblurring. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13676, pp. 581–596. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19787-1_33

    Chapter  Google Scholar 

  61. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: ICCV (2023)

    Google Scholar 

  62. Zhang, Z., Hoai, M.: Object detection with self-supervised scene adaptation. In: CVPR (2023)

    Google Scholar 

  63. Zhong, Z., Gao, Y., Zheng, Y., Zheng, B., Sato, I.: Real-world video deblurring: a benchmark dataset and an efficient recurrent neural network. IJCV 131, 284–301 (2022)

    Article  Google Scholar 

  64. Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: CVPR (2022)

    Google Scholar 

  65. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: ICLR (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science and Technology Council (NSTC) under grants 112-2221-EA49-090-MY3, 111-2628-E-A49-025-MY3, 112-2634-F002-005, 112-2221-E-004-005, 113-2923-E-A49-003-MY2, 113-2221-E-004-001-MY3 and 113-2622-E-004-001 This work was funded in part by Qualcomm through a Taiwan University Research Collaboration Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ting He .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 14489 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, JT. et al. (2025). Domain-Adaptive Video Deblurring via Test-Time Blurring. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15088. Springer, Cham. https://doi.org/10.1007/978-3-031-73404-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73404-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73403-8

  • Online ISBN: 978-3-031-73404-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics