Abstract
Unsupervised domain adaptation (UDA) is a critical challenge in machine learning, aiming to transfer knowledge from a labeled source domain to an unlabeled target domain. In this work, we aim to improve target set accuracy in any existing UDA method by introducing an approach that utilizes pseudo-candidate sets for labeling the target data. These pseudo-candidate sets serve as a proxy for the true labels in the absence of direct supervision. To enhance the accuracy of the target domain, we propose Unsupervised Domain Adaptation refinement using Pseudo-Candidate Sets (UDPCS), a method which effectively learns to disambiguate among classes in the pseudo-candidate set. Our approach is characterized by two distinct loss functions: one that acts on the pseudo-candidate set to refine its predictions and another that operates on the labels outside the pseudo-candidate set. We use a threshold-based strategy to further guide the learning process toward accurate label disambiguation. We validate our novel yet simple approach through extensive experiments on three well-known benchmark datasets: Office-Home, VisDA, and DomainNet. Our experimental results demonstrate the efficacy of our method in achieving consistent gains on target accuracies across these datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010)
Chen, C., et al.: Homm: higher-order moment matching for unsupervised domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3422–3429 (2020)
Chen, L., et al.: Reusing the task-specific classifier as a discriminator: discriminator-free adversarial domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7181–7190 (2022)
Chen, W., Lin, L., Yang, S., Xie, D., Pu, S., Zhuang, Y.: Self-supervised noisy label learning for source-free unsupervised domain adaptation. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10185–10192. IEEE (2022)
Chen, Y., Wei, C., Kumar, A., Ma, T.: Self-training avoids using spurious features under domain shift. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21061–21071 (2020)
Csurka, G.: Domain Adaptation for Visual Applications: A Comprehensive Survey, pp. 1–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space (2019)
DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout (2017)
Du, Z., Li, J., Su, H., Zhu, L., Lu, K.: Cross-domain gradient discrepancy minimization for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3937–3946 (2021)
Feng, L., et al.: Provably consistent partial-label learning. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 10948–10960. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_files/paper/2020/file/7bd28f15a49d5e5848d6ec70e584e625-Paper.pdf
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32nd International Conference on Machine Learning (ICML) (2015)
Gao, Z., Zhang, S., Huang, K., Wang, Q., Zhong, C.: Gradient distribution alignment certificates better adversarial domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8937–8946 (2021)
Jiang, J., Chen, B., Fu, B., Long, M.: Transfer-learning-library (2020). https://github.com/thuml/Transfer-Learning-Library
Jin, X., Lan, C., Zeng, W., Chen, Z.: Re-energizing domain discriminator with sample relabeling for adversarial domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9174–9183 (2021)
Jin, Y., Wang, X., Long, M., Wang, J.: Minimum class confusion for versatile domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 464–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_28
Jing, X., Qian, K., Jianu, T., Luo, S.: Unsupervised adversarial domain adaptation for sim-to-real transfer of tactile images. IEEE Trans. Instrum. Meas. 72, 1–11 (2023). https://doi.org/10.1109/TIM.2023.3268458
Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)
Le, T., Nguyen, T., Ho, N., Bui, H., Phung, D.: Lamda: label matching deep domain adaptation. In: International Conference on Machine Learning, pp. 6043–6054. PMLR (2021)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Lee, C.Y., Batra, T., Baig, M.H., Ulbricht, D.: Sliced Wasserstein discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10285–10295 (2019)
Li, S., et al.: Domain conditioned adaptation network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11386–11393 (2020)
Liu, H., Wang, J., Long, M.: Cycle self-training for domain adaptation. In: Advances in Neural Information Processing Systems, vol. 34, pp. 22968–22981 (2021)
Liu, X., et al.: Adversarial unsupervised domain adaptation with conditional and label shift: infer, align and iterate. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10367–10376 (2021)
Liu, Y., Zhou, Z., Sun, B.: Cot: Unsupervised domain adaptation with clustering and optimal transport. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19998–20007 (2023)
Lv, J., Xu, M., Feng, L., Niu, G., Geng, X., Sugiyama, M.: Progressive identification of true labels for partial-label learning. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 6500–6510. PMLR, 13–18 July 2020. https://proceedings.mlr.press/v119/lv20a.html
Mei, K., Zhu, C., Zou, J., Zhang, S.: Instance adaptive self-training for unsupervised domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 415–430. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_25
Na, J., Jung, H., Chang, H.J., Hwang, W.: Fixbi: bridging domain spaces for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1094–1103 (2021)
Nguyen, T., Le, T., Dam, N., Tran, Q.H., Nguyen, T., Phung, D.Q.: Tidot: a teacher imitation learning approach for domain adaptation with optimal transport. In: IJCAI, pp. 2862–2868 (2021)
Patel, V.M., Gopalan, R., Li, R., Chellappa, R.: Visual domain adaptation: a survey of recent advances. IEEE Sig. Process. Mag. 32(3), 53–69 (2015)
Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1406–1415 (2019)
Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D., Saenko, K.: Visda: the visual domain adaptation challenge (2017)
Phan, H., Le, T., Phung, T., Bui, A.T., Ho, N., Phung, D.: Global-local regularization via distributional robustness. In: International Conference on Artificial Intelligence and Statistics, pp. 7644–7664. PMLR (2023)
Prabhu, V., Khare, S., Kartik, D., Hoffman, J.: Sentry: selective entropy optimization via committee consistency for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8558–8567 (2021)
Qian, N.: On the momentum term in gradient descent learning algorithms. Neural Netw. 12(1), 145–151 (1999)
Rangwani, H., Aithal, S.K., Mishra, M., Jain, A., Radhakrishnan, V.B.: A closer look at smoothness in domain adversarial training. In: International Conference on Machine Learning, pp. 18378–18399. PMLR (2022)
Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)
Shin, I., Woo, S., Pan, F., Kweon, I.S.: Two-phase pseudo label densification for self-training based domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 532–548. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_32
Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 596–608. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_files/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733-Paper.pdf
Tian, Y., Yu, X., Fu, S.: Partial label learning: taxonomy, analysis and outlook. Neural Netw. 161, 708–734 (2023). https://doi.org/10.1016/j.neunet.2023.02.019, https://www.sciencedirect.com/science/article/pii/S0893608023000825
Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)
Wang, X., Zhuo, J., Zhang, M., Wang, S., Fang, Y.: Revisiting unsupervised domain adaptation models: a smoothness perspective. In: Proceedings of the Asian Conference on Computer Vision, pp. 1504–1521 (2022)
Wei, G., Lan, C., Zeng, W., Chen, Z.: MetaAlign: coordinating domain alignment and classification for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16643–16653 (2021)
Wei, G., Lan, C., Zeng, W., Zhang, Z., Chen, Z.: ToAlign: task-oriented alignment for unsupervised domain adaptation. In: Advances in Neural Information Processing Systems, vol. 34, pp. 13834–13846 (2021)
Wen, H., Cui, J., Hang, H., Liu, J., Wang, Y., Lin, Z.: Leveraged weighted loss for partial label learning. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 139, pp. 11091–11100. PMLR, 18–24 July 2021. https://proceedings.mlr.press/v139/wen21a.html
Wu, D.D., Wang, D.B., Zhang, M.L.: Revisiting consistency regularization for deep partial label learning. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 162, pp. 24212–24225. PMLR, 17–23 July 2022. https://proceedings.mlr.press/v162/wu22l.html
Xie, X., Chen, J., Li, Y., Shen, L., Ma, K., Zheng, Y.: Self-supervised CycleGAN for object-preserving image-to-image domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 498–513. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_30
Yan, Y., Guo, Y.: Partial label unsupervised domain adaptation with class-prototype alignment. In: The Eleventh International Conference on Learning Representations (2022)
Zhang, Y., Liu, T., Long, M., Jordan, M.: Bridging theory and algorithm for domain adaptation. In: Proceedings of the 36th International Conference on Machine Learning (ICML) (2019)
Zhou, L., Ye, M., Zhu, X., Xiao, S., Fan, X.Q., Neri, F.: Homeomorphism alignment for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 18699–18710 (2023)
Acknowledgements
The research of AD is supported in part by the Prime Minister Research Fellowship, Ministry of Education, Government of India. VNB would like to acknowledge the support through the Govt of India SERB IMPRINT and DST ICPS funding programs for this work. The research of CKM is supported by the LiDAR and Camera Sensors Data based Deep Learning Algorithms for Autonomous Driving System project, funded by Govt. of India SERB program. The research is also partly supported by the Indo-Norwegian Collaboration in Autonomous Cyber-Physical Systems (INCAPS) project: 287918 of the International Partnerships for Excellent Education, Research and Innovation (INTPART) program and the Low-Altitude UAV Communication and Tracking (LUCAT) project: 280835 of the IKTPLUSS program from the Research Council of Norway. We are grateful to the anonymous reviewers for the feedback that helped improved the presentation of this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dayal, A., Lalla, R., Cenkeramaddi, L.R., Mohan, C.K., Kumar, A., Balasubramanian, V.N. (2025). Improving Unsupervised Domain Adaptation: A Pseudo-candidate Set Approach. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15090. Springer, Cham. https://doi.org/10.1007/978-3-031-73411-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-73411-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73410-6
Online ISBN: 978-3-031-73411-3
eBook Packages: Computer ScienceComputer Science (R0)