Skip to main content

Harmonizing Knowledge Transfer in Neural Network with Unified Distillation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15091))

Included in the following conference series:

  • 417 Accesses

Abstract

Knowledge distillation (KD), known for its ability to transfer knowledge from a cumbersome network (teacher) to a lightweight one (student) without altering the architecture, has been garnering increasing attention. Two primary categories emerge within KD methods: feature-based, focusing on intermediate layers’ features, and logits-based, targeting the final layer’s logits. This paper introduces a novel perspective by leveraging diverse knowledge sources within a unified KD framework. Specifically, we aggregate features from intermediate layers into a comprehensive representation, effectively gathering semantic information from different stages and scales. Subsequently, we predict the distribution parameters from this representation. These steps transform knowledge from the intermediate layers into corresponding distributive forms, thereby allowing for knowledge distillation through a unified distribution constraint at different stages of the network, ensuring the comprehensiveness and coherence of knowledge transfer. Numerous experiments were conducted to validate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  2. Chen, P., Liu, S., Zhao, H., Jia, J.: Distilling knowledge via knowledge review. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5008–5017 (2021)

    Google Scholar 

  3. Cho, J.H., Hariharan, B.: On the efficacy of knowledge distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4794–4802 (2019)

    Google Scholar 

  4. Chowdhery, A., et al.: PaLM: scaling language modeling with pathways. arXiv preprint arXiv:2204.02311 (2022)

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNET: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Helong, Z., et al.: Rethinking soft labels for knowledge distillation: a bias-variance tradeoff perspective. In: International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  7. Heo, B., Kim, J., Yun, S., Park, H., Kwak, N., Choi, J.Y.: A comprehensive overhaul of feature distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1921–1930 (2019)

    Google Scholar 

  8. Heo, B., Lee, M., Yun, S., Choi, J.Y.: Knowledge transfer via distillation of activation boundaries formed by hidden neurons. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp. 3779–3787. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33013779

  9. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  10. Hsu, Y.C., Smith, J., Shen, Y., Kira, Z., Jin, H.: A closer look at knowledge distillation with features, logits, and gradients. arXiv preprint arXiv:2203.10163 (2022)

  11. Jin, Y., Wang, J., Lin, D.: Multi-level logit distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24276–24285 (2023)

    Google Scholar 

  12. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  13. Li, J., et al.: Rethinking feature-based knowledge distillation for face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20156–20165 (2023)

    Google Scholar 

  14. Lin, S., et al.: Knowledge distillation via the target-aware transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10915–10924 (2022)

    Google Scholar 

  15. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  16. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  17. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3967–3976 (2019)

    Google Scholar 

  18. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)

    MathSciNet  Google Scholar 

  19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  20. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets: hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)

  21. Shu, C., Liu, Y., Gao, J., Yan, Z., Shen, C.: Channel-wise knowledge distillation for dense prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5311–5320 (2021)

    Google Scholar 

  22. Song, J., Chen, Y., Ye, J., Song, M.: Spot-adaptive knowledge distillation. IEEE Trans. Image Process. 31, 3359–3370 (2022)

    Article  Google Scholar 

  23. Sun, S., Ren, W., Li, J., Wang, R., Cao, X.: Logit standardization in knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15731–15740 (2024)

    Google Scholar 

  24. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. arXiv preprint arXiv:1910.10699 (2019)

  25. Touvron, H., et al.: LLaMA: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)

  26. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1365–1374 (2019)

    Google Scholar 

  27. Wang, J., Chen, Y., Zheng, Z., Li, X., Cheng, M.M., Hou, Q.: CrossKD: cross-head knowledge distillation for dense object detection. arXiv preprint arXiv:2306.11369 (2023)

  28. Wang, T., Yuan, L., Zhang, X., Feng, J.: Distilling object detectors with fine-grained feature imitation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4933–4942 (2019)

    Google Scholar 

  29. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  30. Yang, Z., Zeng, A., Li, Z., Zhang, T., Yuan, C., Li, Y.: From knowledge distillation to self-knowledge distillation: a unified approach with normalized loss and customized soft labels. arXiv preprint arXiv:2303.13005 (2023)

  31. Zagoruyko, S., Komodakis, N.: Paying More attention to attention: improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)

  32. Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., Ma, K.: Be your own teacher: improve the performance of convolutional neural networks via self distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  33. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  34. Zhao, B., Cui, Q., Song, R., Qiu, Y., Liang, J.: Decoupled knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11953–11962 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R & D Program of China (2022ZD0161800), and the National Natural Science Foundation of China (62271203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y., Yan, Z., Shen, C., Fang, F., Zhang, G. (2025). Harmonizing Knowledge Transfer in Neural Network with Unified Distillation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15091. Springer, Cham. https://doi.org/10.1007/978-3-031-73414-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73414-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73413-7

  • Online ISBN: 978-3-031-73414-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics