Abstract
Perspective distortion (PD) causes unprecedented changes in shape, size, orientation, angles, and other spatial relationships of visual concepts in images. Precisely estimating camera intrinsic and extrinsic parameters is a challenging task that prevents synthesizing perspective distortion. Non-availability of dedicated training data poses a critical barrier to developing robust computer vision methods. Additionally, distortion correction methods make other computer vision tasks a multi-step approach and lack performance. In this work, we propose mitigating perspective distortion (MPD) by employing a fine-grained parameter control on a specific family of Möbius transform to model real-world distortion without estimating camera intrinsic and extrinsic parameters and without the need for actual distorted data. Also, we present a dedicated perspectively distorted benchmark dataset, ImageNet-PD, to benchmark the robustness of deep learning models against this new dataset. The proposed method outperforms existing benchmarks, ImageNet-E and ImageNet-X. Additionally, it significantly improves performance on ImageNet-PD while consistently performing on standard data distribution. Notably, our method shows improved performance on three PD-affected real-world applications—crowd counting, fisheye image recognition, and person re-identification—and one PD-affected challenging CV task: object detection. The source code, dataset, and models are available on the project webpage at https://prakashchhipa.github.io/projects/mpd.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnold, D.N., Rogness, J.P.: Möbius transformations revealed. Not. Am. Math. Soc. 55(10), 1226–1231 (2008)
Ayala-Acevedo, A., Devgun, A., Zahir, S., Askary, S.: Vehicle re-identification: Pushing the limits of re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, vol. 2 (2019)
Azizi, N., Possegger, H., Rodolà, E., Bischof, H.: 3D human pose estimation using möbius graph convolutional networks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCs, vol. 13661, pp. 160–178. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19769-7_10
Bai, S., He, Z., Qiao, Y., Hu, H., Wu, W., Yan, J.: Adaptive dilated network with self-correction supervision for counting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4594–4603 (2020)
Cao, Z., Ai, H., Cao, Y.P., Shan, Y., Qie, X., Wang, L.: OmniZoomer: learning to move and zoom in on sphere at high-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12897–12907 (2023)
Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: Proceedings of the International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Cheng, Z.Q., Li, J.X., Dai, Q., Wu, X., Hauptmann, A.G.: Learning spatial awareness to improve crowd counting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6152–6161 (2019)
Cho, H., Cho, Y., Yu, J., Kim, J.: Camera distortion-aware 3D human pose estimation in video with optimization-based meta-learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11169–11178 (2021)
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: CVPR workshops, pp. 702–703 (2020)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: Proceedings of the International Conference on Learning Representations (2020)
Fu, J., Bajić, I.V., Vaughan, R.G.: Datasets for face and object detection in fisheye images. Data Brief 27, 104752 (2019)
Habel, K., Deuser, F., Oswald, N.: Clip-reident: contrastive training for player re-identification. In: Proceedings of the 5th International ACM Workshop on Multimedia Content Analysis in Sports, pp. 129–135 (2022)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.: Augmix: a simple data processing method to improve robustness and uncertainty. In: International Conference on Learning Representations
Hendrycks, D., et al.: PixMix: dreamlike pictures comprehensively improve safety measures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16783–16792 (2022)
Howie, J.M.: Complex Analysis. Springer, Cham (2003)
Hu, Y., et al.: NAS-Count: counting-by-density with neural architecture search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 747–766. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_45
Idrees, H., Saleemi, I., Seibert, C., Shah, M.: Multi-source multi-scale counting in extremely dense crowd images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2547–2554 (2013)
Idrees, H., et al.: Composition loss for counting, density map estimation and localization in dense crowds. In: Proceedings of the European Conference on Computer Vision, pp. 532–546 (2018)
Idrissi, B.Y., et al.: ImageNet-x: understanding model mistakes with factor of variation annotations. In: Proceedings of the International Conference on Learning Representations (2023)
Jiang, X., et al.: Attention scaling for crowd counting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4706–4715 (2020)
Jin, L., et al.: Perspective fields for single image camera calibration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17307–17316 (2023)
Kocabas, M., Huang, C.H.P., Tesch, J., Müller, L., Hilliges, O., Black, M.J.: Spec: seeing people in the wild with an estimated camera. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11035–11045 (2021)
Kumar, V.R., Eising, C., Witt, C., Yogamani, S.: Surround-view fisheye camera perception for automated driving: overview, survey & challenges. IEEE Trans. Intell. Transp. Syst. (2023)
Li, X., Chen, Y., Zhu, Y., Wang, S., Zhang, R., Xue, H.: ImageNet-e: benchmarking neural network robustness via attribute editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20371–20381 (2023)
Li, X., Zhang, B., Sander, P.V., Liao, J.: Blind geometric distortion correction on images through deep learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4855–4864 (2019)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014 Part V. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, W., Salzmann, M., Fua, P.: Context-aware crowd counting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5099–5108 (2019)
Liu, X., Yang, J., Ding, W., Wang, T., Wang, Z., Xiong, J.: Adaptive mixture regression network with local counting map for crowd counting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 241–257. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_15
Ma, Z., Hong, X., Wei, X., Qiu, Y., Gong, Y.: Towards a universal model for cross-dataset crowd counting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3205–3214 (2021)
Ma, Z., Wei, X., Hong, X., Gong, Y.: Bayesian loss for crowd count estimation with point supervision. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6142–6151 (2019)
Miao, Y., Lin, Z., Ding, G., Han, J.: Shallow feature based dense attention network for crowd counting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11765–11772 (2020)
Mitchel, T.W., Aigerman, N., Kim, V.G., Kazhdan, M.: Möbius convolutions for spherical CNNs. In: Proceedings of the ACM SIGGRAPH Conference, pp. 1–9 (2022)
Olsen, J.: The Geometry of Möbius Transformations. University of Rochester, Rochester (2010)
Papakipos, Z., Bitton, J.: Augly: data augmentations for adversarial robustness. In: CVPR, pp. 156–163 (2022)
Phan, T.Q., Shivakumara, P., Tian, S., Tan, C.L.: Recognizing text with perspective distortion in natural scenes. In: Proceedings of the IEEE/CVF international Conference on Computer Vision, pp. 569–576 (2013)
PyTorch: Vision: Datasets, transforms and models specific to computer vision (2023), https://github.com/pytorch/vision/tree/main/references/classification, original repository for PyTorch Vision Accessed 1 Aug 2023
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: Proceedings of the International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Rahman, T., Krouglicof, N.: An efficient camera calibration technique offering robustness and accuracy over a wide range of lens distortion. IEEE Trans. Image Process. 21(2), 626–637 (2011)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Shu, W., Wan, J., Tan, K.C., Kwong, S., Chan, A.B.: Crowd counting in the frequency domain. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19618–19627 (2022)
Song, Q., et al.: Rethinking counting and localization in crowds: a purely point-based framework. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3365–3374 (2021)
Tan, J., Zhao, S., Xiong, P., Liu, J., Fan, H., Liu, S.: Practical wide-angle portraits correction with deep structured models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3498–3506 (2021)
Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9626–9635 (2019). https://doi.org/10.1109/ICCV.2019.00972
Van Zandycke, G., Somers, V., Istasse, M., Don, C.D., Zambrano, D.: Deepsportradar-v1: computer vision dataset for sports understanding with high quality annotations. In: Proceedings of the 5th International ACM Workshop on Multimedia Content Analysis in Sports, pp. 1–8 (2022)
Wang, B., Liu, H., Samaras, D., Nguyen, M.H.: Distribution matching for crowd counting. Proc. Adv. Neural Inf. Process. Syst. 33, 1595–1607 (2020)
Wang, M., Cai, H., Dai, Y., Gong, M.: Dynamic mixture of counter network for location-agnostic crowd counting. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 167–177 (2023)
Wang, W., et al.: Zolly: zoom focal length correctly for perspective-distorted human mesh reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3925–3935 (2023)
Wang, Y., et al.: Pillar-based object detection for autonomous driving. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 18–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_2
Xiong, H., Lu, H., Liu, C., Liu, L., Cao, Z., Shen, C.: From open set to closed set: counting objects by spatial divide-and-conquer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8362–8371 (2019)
Yang, S., Lin, C., Liao, K., Zhao, Y.: Innovating real fisheye image correction with dual diffusion architecture. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12699–12708 (2023)
Yang, Y., Li, G., Wu, Z., Su, L., Huang, Q., Sebe, N.: Weakly-supervised crowd counting learns from sorting rather than locations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 1–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_1
Yin, X., Wang, X., Yu, J., Zhang, M., Fua, P., Tao, D.: FisheyerecNet: a multi-context collaborative deep network for fisheye image rectification. In: Proceedings of the European Conference on Computer Vision, pp. 469–484 (2018)
Yu, F., Salzmann, M., Fua, P., Rhodin, H.: PCLS: geometry-aware neural reconstruction of 3D pose with perspective crop layers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9064–9073 (2021)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)
Zhang, J., et al.: A perspective transformation method based on computer vision. In: ICAICA, pp. 765–768. IEEE (2020)
Zhang, Y., Zhou, D., Chen, S., Gao, S., Ma, Y.: Single-image crowd counting via multi-column convolutional neural network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 589–597 (2016)
Zhang, Y., Song, J., Ding, Y., Yuan, Y., Wei, H.L.: FSD-BRIEF: a distorted BRIEF descriptor for fisheye image based on spherical perspective model. Sensors (Basel) (2021)
Zhao, Yet al.: Learning perspective undistortion of portraits. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7849–7859 (2019)
Zhou, S., Zhang, J., Jiang, H., Lundh, T., Ng, A.Y.: Data augmentation with mobius transformations. Mach. Learn. Sci. Technol. 2(2), 025016 (2021)
Acknowledgment
The authors thank Sumit Rakesh, Luleå University of Technology, for his support with the Lotty Bruzelius cluster. We also thank the National Supercomputer Centre at Linköping University for the Berzelius supercomputing, supported by the Knut and Alice Wallenberg Foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chhipa, P.C., Chippa, M.S., De, K., Saini, R., Liwicki, M., Shah, M. (2025). Möbius Transform for Mitigating Perspective Distortions in Representation Learning. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15131. Springer, Cham. https://doi.org/10.1007/978-3-031-73464-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-73464-9_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73463-2
Online ISBN: 978-3-031-73464-9
eBook Packages: Computer ScienceComputer Science (R0)