Skip to main content

SAMU: An Efficient and Promptable Foundation Model for Medical Image Segmentation

  • Conference paper
  • First Online:
Foundation Models for General Medical AI (MedAGI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15184))

Included in the following conference series:

  • 331 Accesses

Abstract

Segmentation of 3D medical images is a labor-intensive task with important clinical applications. Recently, foundation models for image segmentation have received significant interest. Specifically, many works have proposed methods for the adaptation of promptable natural image foundation models to medical image segmentation. However, the shift to 3D volumes from 2D natural images has proven difficult, and many approaches have limited real-world clinical applicability due to large model sizes and corresponding heavy computational requirements. Here, we present an original model for generalized, promptable 3D medical image segmentation. Our approach leverages a lightweight convolutional backbone while simultaneously integrating information from single-point prompts at multiple spatial resolutions. Our approach dramatically reduces the computational burden for promptable segmentation while also outperforming similar recent works on a diverse dataset of 98,699 image-mask pairs from CT and MRI datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baid, U., Ghodasara, S., Mohan, S., Bilello, M., Calabrese, E., Colak, E., Farahani, K., Kalpathy-Cramer, J., Kitamura, F.C., Pati, S., et al.: The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  2. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Scientific data 4(1), 1–13 (2017)

    Article  Google Scholar 

  3. Cardenas, C.E., Yang, J., Anderson, B.M., Court, L.E., Brock, K.B.: Advances in auto-segmentation. In: Seminars in radiation oncology. vol. 29, pp. 185–197. Elsevier (2019)

    Google Scholar 

  4. Cheng, J., Ye, J., Deng, Z., Chen, J., Li, T., Wang, H., Su, Y., Huang, Z., Chen, J., Jiang, L., et al.: Sam-med2d. arXiv preprint arXiv:2308.16184 (2023)

  5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  6. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International conference on machine learning. pp. 1126–1135. PMLR (2017)

    Google Scholar 

  7. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 16000–16009 (2022)

    Google Scholar 

  8. Ji, Y., Bai, H., Ge, C., Yang, J., Zhu, Y., Zhang, R., Li, Z., Zhanng, L., Ma, W., Wan, X., et al.: Amos: A large-scale abdominal multi-organ benchmark for versatile medical image segmentation. Adv. Neural. Inf. Process. Syst. 35, 36722–36732 (2022)

    Google Scholar 

  9. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 4015–4026 (2023)

    Google Scholar 

  10. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical images. Nat. Commun. 15(1), 654 (2024)

    Article  Google Scholar 

  11. Mazurowski, M.A., Dong, H., Gu, H., Yang, J., Konz, N., Zhang, Y.: Segment anything model for medical image analysis: an experimental study. Med. Image Anal. 89, 102918 (2023)

    Article  Google Scholar 

  12. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  13. Shen, Y., Li, J., Shao, X., Romillo, B.I., Jindal, A., Dreizin, D., Unberath, M.: Fastsam3d: An efficient segment anything model for 3d volumetric medical images. arXiv preprint arXiv:2403.09827 (2024)

  14. Wang, H., Guo, S., Ye, J., Deng, Z., Cheng, J., Li, T., Chen, J., Su, Y., Huang, Z., Shen, Y., Fu, B., Zhang, S., He, J., Qiao, Y.: Sam-med3d. arXiv preprint arXiv:2310.15161v2 (2024)

  15. Wasserthal, J., Breit, H.C., Meyer, M.T., Pradella, M., Hinck, D., Sauter, A.W., Heye, T., Boll, D.T., Cyriac, J., Yang, S., et al.: Totalsegmentator: robust segmentation of 104 anatomic structures in ct images. Radiology: Artificial Intelligence 5(5) (2023)

    Google Scholar 

  16. Zhou, L., Liu, H., Bae, J., He, J., Samaras, D., Prasanna, P.: Self pre-training with masked autoencoders for medical image classification and segmentation. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI). pp. 1–6. IEEE (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bae, J., Guo, X., Yerebakan, H., Shinagawa, Y., Farhand, S. (2025). SAMU: An Efficient and Promptable Foundation Model for Medical Image Segmentation. In: Deng, Z., et al. Foundation Models for General Medical AI. MedAGI 2024. Lecture Notes in Computer Science, vol 15184. Springer, Cham. https://doi.org/10.1007/978-3-031-73471-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73471-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73470-0

  • Online ISBN: 978-3-031-73471-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics