Skip to main content

Boosting Vision-Language Models for Histopathology Classification: Predict All at Once

  • Conference paper
  • First Online:
Foundation Models for General Medical AI (MedAGI 2024)

Abstract

The development of vision-language models (VLMs) for histo-pathology has shown promising new usages and zero-shot performances. However, current approaches, which decompose large slides into smaller patches, focus solely on inductive classification, i.e., prediction for each patch is made independently of the other patches in the target test data. We extend the capability of these large models by introducing a transductive approach. By using text-based predictions and affinity relationships among patches, our approach leverages the strong zero-shot capabilities of these new VLMs without any additional labels. Our experiments cover four histopathology datasets and five different VLMs. Operating solely in the embedding space (i.e., in a black-box setting), our approach is highly efficient, processing \(10^5\) patches in just a few seconds, and shows significant accuracy improvements over inductive zero-shot classification. Code available at https://github.com/FereshteShakeri/Histo-TransCLIP.

M. Zanella and F. Shakeri—are Equally Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bilgin, C., Demir, C., Nagi, C., Yener, B.: Cell-graph mining for breast tissue modeling and classification. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5311–5314. IEEE (2007)

    Google Scholar 

  2. Borkowski, A.A., Bui, M.M., Thomas, L.B., Wilson, C.P., DeLand, L.A., Mastorides, S.M.: Lung and colon cancer histopathological image dataset (lc25000). arXiv preprint arXiv:1912.12142 (2019)

  3. Boudiaf, M., Ziko, I., Rony, J., Dolz, J., Piantanida, P., Ben Ayed, I.: Information maximization for few-shot learning. Adv. Neural. Inf. Process. Syst. 33, 2445–2457 (2020)

    Google Scholar 

  4. Chen, X., et al.: Recent advances and clinical applications of deep learning in medical image analysis. Med. Image Anal. 79 (2022)

    Google Scholar 

  5. Dhillon, G.S., Chaudhari, P., Ravichandran, A., Soatto, S.: A baseline for few-shot image classification. In: International Conference on Learning Representations (2019)

    Google Scholar 

  6. Hartsock, I., Rasool, G.: Vision-language models for medical report generation and visual question answering: A review. CoRR abs/2403.02469 (2024). https://doi.org/10.48550/ARXIV.2403.02469, https://doi.org/10.48550/arXiv.2403.02469

  7. Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T., Zou, J.: A visual-language foundation model for pathology image analysis using medical twitter. Nat. Med. 29, 1–10 (2023)

    Article  Google Scholar 

  8. Ikezogwo, W.O., et al.: Quilt-1m: One million image-text pairs for histopathology. arXiv preprint arXiv:2306.11207 (2023)

  9. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning, pp. 4904–4916 (2021)

    Google Scholar 

  10. Joachims, T.: Transductive inference for text classification using support vector machines. In: Proceedings of the Sixteenth International Conference on Machine Learning, pp. 200–209 (1999)

    Google Scholar 

  11. Kather, J.N., Halama, N., Marx, A.: 100,000 histological images of human colorectal cancer and healthy tissue. Zenodo10 5281 (2018)

    Google Scholar 

  12. Komura, D., Ishikawa, S.: Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. J. 16, 34–42 (2018)

    Article  Google Scholar 

  13. Kriegsmann, K., et al.: Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections. Front. Oncol. 12, 1022967 (2022)

    Google Scholar 

  14. Liu, J., Song, L., Qin, Y.: Prototype rectification for few-shot learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., (eds.) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol. 12346, pp. 741–756. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_43

  15. Lu, M.Y., et al.: A visual-language foundation model for computational pathology. Nat. Med. 30, 863–874 (2024)

    Google Scholar 

  16. Madabhushi, A.: Digital pathology image analysis: opportunities and challenges. Imaging Med. 1(1), 7 (2009)

    Article  Google Scholar 

  17. Martin, S., Huang, Y., Shakeri, F., Pesquet, J.C., Ben Ayed, I.: Transductive zero-shot and few-shot clip. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 28816–28826 (2024)

    Google Scholar 

  18. Pantanowitz, L.: Digital images and the future of digital pathology. J. Pathol. Inform. 1 (2010)

    Google Scholar 

  19. Petushi, S., Garcia, F.U., Haber, M.M., Katsinis, C., Tozeren, A.: Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Med. Imaging 6(1), 1–11 (2006)

    Article  Google Scholar 

  20. Qureshi, H., Sertel, O., Rajpoot, N., Wilson, R., Gurcan, M.: Adaptive discriminant wavelet packet transform and local binary patterns for meningioma subtype classification. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008. MICCAI 2008. Lecture Notes in Computer Science, vol. 5242, pp. 196–204. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85990-1_24

  21. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763 (2021)

    Google Scholar 

  22. Sadraoui, A., et al.: A transductive few-shot learning approach for classification of digital histopathological slides from liver cancer. In: IEEE International Symposium on Biomedical Imaging (ISBI) (2024)

    Google Scholar 

  23. Silva-Rodriguez, J., Chakor, H., Kobbi, R., Dolz, J., Ayed, I.B.: A foundation language-image model of the retina (flair): Encoding expert knowledge in text supervision. ArXiv Preprint (2023)

    Google Scholar 

  24. Silva-Rodríguez, J., Schmidt, A., Sales, M.A., Molina, R., Naranjo, V.: Proportion constrained weakly supervised histopathology image classification. Comput. Biol. Med. 147, 105714 (2022)

    Google Scholar 

  25. Tabesh, A., et al.: Multifeature prostate cancer diagnosis and gleason grading of histological images. IEEE Trans. Med. Imaging 26(10), 1366–1378 (2007)

    Google Scholar 

  26. Vapnik, V.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999). https://doi.org/10.1109/72.788640

    Article  Google Scholar 

  27. Wang, Z., Wu, Z., Agarwal, D., Sun, J.: Medclip: contrastive learning from unpaired medical images and text. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1–12 (2022)

    Google Scholar 

  28. Wu, C., Zhang, X., Zhang, Y., Wang, Y., Xie, W.: Medklip: medical knowledge enhanced language-image pre-training for x-ray diagnosis. In: ICCV (2023)

    Google Scholar 

  29. Zanella, M., Gérin, B., Ayed, I.B.: Boosting vision-language models with transduction. arXiv preprint arXiv:2406.01837 (2024)

  30. Zhang, Y., Jiang, H., Miura, Y., Manning, C.D., Langlotz, C.P.: Contrastive learning of medical visual representations from paired images and text. In: MHLC (2022)

    Google Scholar 

  31. Ziko, I., Dolz, J., Granger, E., Ayed, I.B.: Laplacian regularized few-shot learning. In: International Conference on Machine Learning, pp. 11660–11670. PMLR (2020)

    Google Scholar 

Download references

Acknowledgement

M. Zanella is funded by the Walloon region under grant No. 2010235 (ARIAC by DIGITALWALLONIA4.AI). F. Shakeri is funded by Natural Sciences and Engineering Research Council of Canada (NSERC) and Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Zanella .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zanella, M., Shakeri, F., Huang, Y., Bahig, H., Ayed, I.B. (2025). Boosting Vision-Language Models for Histopathology Classification: Predict All at Once. In: Deng, Z., et al. Foundation Models for General Medical AI. MedAGI 2024. Lecture Notes in Computer Science, vol 15184. Springer, Cham. https://doi.org/10.1007/978-3-031-73471-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73471-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73470-0

  • Online ISBN: 978-3-031-73471-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics