Skip to main content

Abstract

Accurate pancreas segmentation is crucial for diagnosing and managing pancreatic diseases, facilitating preoperative planning, and aiding transplantation procedures. Effective segmentation enables the identification and monitoring of conditions such as chronic pancreatitis and diabetes mellitus, which are characterized by changes in pancreatic size and volume. Recent advancements in segmentation technology have leveraged foundation models like SAM and MedSAM, achieving state-of-the-art performance in various domains. In this work, we explore the effectiveness of using these models in the particularly challenging domain of pancreas segmentation. We also propose a simple yet effective method for including 3D information into SAM. Our findings suggest that, despite foundation models have a good general knowledge, they are not well-suited for pancreas segmentation without significant architectural modifications and the inclusion of a good prompt. Moreover, we found that simply including volume information significantly enhances segmentation performance, even without the use of an expert prompt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Busireddy, K.K., et al.: Pancreatitis-imaging approach. World J. Gastrointest. Pathophysiol. 5(3), 252–270 (2014)

    Google Scholar 

  2. Campbell-Thompson, M.L.: The influence of type 1 diabetes on pancreatic weight. Diabetologia 59(1), 217–221 (2016)

    Article  Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. http://arxiv.org/abs/2010.11929

  5. Farag, A., Lu, L., Roth, H.R., Liu, J., Turkbey, E., Summers, R.M.: A bottom-up approach for pancreas segmentation using cascaded superpixels and (Deep) image patch labeling. IEEE Trans. Image Process. 26(1), 386–399 (2017)

    Article  MathSciNet  Google Scholar 

  6. Kirillov, A., et al.: Segment Anything. In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3992–4003 (2023)

    Google Scholar 

  7. Lei, W., Wei, X., Zhang, X., Li, K., Zhang, S.: Medlsam: Localize and segment anything model for 3d medical images. arXiv preprint arXiv: (2023)

    Google Scholar 

  8. Lim, S.H., Kim, Y.J., Park, Y.H., Kim, D., Kim, K.G., Lee, D.H.: Automated pancreas segmentation and volumetry using deep neural network on computed tomography. Sci. Rep. 12(1), 4075 (2022)

    Article  Google Scholar 

  9. Ma, J., He, Y., Li, F., et al.: Segment anything in medical images. Nat. Commun. 15, 654 (2024)

    Article  Google Scholar 

  10. Nishio, M., Noguchi, S., Fujimoto, K.: Automatic pancreas segmentation using coarse-scaled 2D model of deep learning: usefulness of data augmentation and deep u-net. Appl. Sci. 10(10) (2020)

    Google Scholar 

  11. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. In: MIDL (2018)

    Google Scholar 

  12. Proietto Salanitri, F., Bellitto, G., Irmakci, I., Palazzo, S., Bagci, U., Spampinato, C.: Hierarchical 3D feature learning for pancreas segmentation. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds.) MLMI 2021. LNCS, vol. 12966, pp. 238–247. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87589-3_25

    Chapter  Google Scholar 

  13. Sasamori, H., Fukui, T., Hayashi, T., Yamamoto, T., Ohara, M., Yamamoto, S., Kobayashi, T., Hirano, T.: Analysis of pancreatic volume in acute-onset, slowly-progressive and fulminant type 1 diabetes in a Japanese population. J. Diabetes Investig. 9(5), 1091–1099 (2018)

    Article  Google Scholar 

  14. Wang, H., et al.: Sam-med3D (2023)

    Google Scholar 

  15. Zhang, Z., et al.: Large-scale multi-center CT and MRI segmentation of pancreas with deep learning (2024)

    Google Scholar 

  16. Zhang, Z., Yao, L., Keles, E., Velichko, Y., Bagci, U.: Deep learning algorithms for pancreas segmentation from radiology scans: a review. Adv. Clin. Radiol. 5(1), 31–52 (2023)

    Article  Google Scholar 

  17. Zhou, Y., et al.: Hyper-pairing network for multi-phase pancreatic ductal adenocarcinoma segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11765 LNCS, pp. 155–163 (2019). https://doi.org/10.1007/978-3-030-32245-8_18

Download references

Acknowledgements

S. Calcagno acknowledges financial support from PNRR MUR project PE0000013-FAIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Calcagno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rapisarda, E., Gravagno, A.G., Calcagno, S., Giordano, D. (2025). Assessing the Efficacy of Foundation Models in Pancreas Segmentation. In: Proietto Salanitri, F., et al. Artificial Intelligence in Pancreatic Disease Detection and Diagnosis, and Personalized Incremental Learning in Medicine. PILM AIPAD 2024 2024. Lecture Notes in Computer Science, vol 15197. Springer, Cham. https://doi.org/10.1007/978-3-031-73483-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73483-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73482-3

  • Online ISBN: 978-3-031-73483-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics