Abstract
Pruning consists on an agricultural trimming procedure that is crucial in some species of plants to promote healthy growth and increased yield. Generally, this task is done through manual labour, which is costly, physically demanding, and potentially dangerous for the worker. Robotic pruning is an automated alternative approach to manual labour on this task. This approach focuses on selective pruning and requires the existence of an end-effector capable of detecting and cutting the correct point on the branch to achieve efficient pruning. This paper reviews and analyses different end-effectors used in robotic pruning, which helped to understand the advantages and limitations of the different techniques used and, subsequently, clarified the work required to enable autonomous pruning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Universal Robots UR5e, https://www.universal-robots.com/products/ur5-robot/.
- 2.
Intel RealSense D345, https://www.intelrealsense.com/depth-camera-d435/.
- 3.
- 4.
Mathworks Matlab, https://www.mathworks.com/products/matlab.html.
- 5.
Kinova Robotics, https://www.kinovarobotics.com/.
- 6.
Maxon, https://www.maxongroup.com/en.
- 7.
FarmBot, https://farm.bot/.
- 8.
Betu Servo, https://betuservo.com/.
- 9.
- 10.
Makita, https://www.makita.biz/.
- 11.
Ricoh Theta V, https://us.ricoh-imaging.com/product/theta-v/.
References
Berners-Lee, M., Kennelly, C., Watson, R., Hewitt, C.N.: Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa: Sci. Anthropocene 6, 52 (2018). https://doi.org/10.1525/elementa.310
Botterill, T., et al.: A robot system for pruning grape vines. J. Field Robot. 34(6), 1100–1122 (2017). https://doi.org/10.1002/rob.21680
Cuevas-Velasquez, H., et al.: Real-Time Stereo Visual Servoing for Rose Pruning with Robotic Arm, pp. 7050–7056 (2020). https://doi.org/10.1109/ICRA40945.2020.9197272
Funabashi, M.: Synecological farming: theoretical foundation on biodiversity responses of plant communities. Plant Biotechnol. 33(4), 213–234 (2016). https://doi.org/10.5511/plantbiotechnology.16.0219a
He, L., Schupp, J.: Sensing and automation in pruning of apple trees: a review. Agronomy 8(10) (2018). https://doi.org/10.3390/agronomy8100211
Kuta, L., Komarnicki, P., Łakoma, K., Praska, J.: Tomato fruit quality as affected by ergonomic conditions while manually harvested. Agriculture 13(9) (2023). https://doi.org/10.3390/agriculture13091831
Miyazaki, R., Matori, W., Kominami, T., Paul, H., Shimonomura, K.: Multirotor Long-Reach Aerial Pruning with Wire-Suspended Saber Saw, Piscataway, pp. 1787–1793 (2022). https://doi.org/10.1109/IROS47612.2022.9981306
Oliveira, F., Tinoco, V., Magalhães, S., Santos, F.N., Silva, M.F.: End-effectors for harvesting manipulators - state of the art review. In: 2022 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 98–103 (2022). https://doi.org/10.1109/ICARSC55462.2022.9784809
Oliveira, L.F.P., Moreira, A.P., Silva, M.F.: Advances in agriculture robotics: a state-of-the-art review and challenges ahead. Robotics 10(2) (2021). https://doi.org/10.3390/robotics10020052
Otani, T., et al.: Agricultural robot under solar panels for sowing, pruning, and harvesting in a synecoculture environment. Agriculture 13(1) (2023). https://doi.org/10.3390/agriculture13010018
Presten, M., et al.: Automated Pruning of Polyculture Plants, Piscataway, pp. 242–249 (2022). https://doi.org/10.1109/CASE49997.2022.9926632
Ray, D.K., Mueller, N.D., West, P.C., Foley, J.A.: Yield trends are insufficient to double global crop production by 2050. PLOS ONE 8(6), 1–8 (2013). https://doi.org/10.1371/journal.pone.0066428
Reich, L.: The Pruning Book. Taunton Press (2010). https://books.google.pt/books?id=86t0NnKWGFEC
Silwal, A., Yandun, F., Nellithimaru, A., Bates, T., Kantor, G.: Bumblebee: a path towards fully autonomous robotic vine pruning (2021). https://doi.org/10.48550/arXiv.2112.00291
Sukkar, F.: Fast, reliable and efficient database search motion planner (FREDS-MP) for repetitive manipulator tasks (2017). https://api.semanticscholar.org/CorpusID:67024488
Tinoco, V., Silva, M.F., Santos, F.N., Rocha, L.F., Magalhães, S., Santos, L.C.: A review of pruning and harvesting manipulators. In: 2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 155–160 (2021). https://doi.org/10.1109/ICARSC52212.2021.9429806
Yang, Q., Du, X., Wang, Z., Meng, Z., Ma, Z., Zhang, Q.: A review of core agricultural robot technologies for crop productions. Comput. Electron. Agric. 206, 107701 (2023). https://doi.org/10.1016/j.compag.2023.107701
You, A., Sukkar, F., Fitch, R., Karkee, M., Davidson, J.R.: An efficient planning and control framework for pruning fruit trees. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3930–3936 (2020). https://doi.org/10.1109/ICRA40945.2020.9197551
Zahid, A., Mahmud, M.S., He, L., Choi, D., Heinemann, P., Schupp, J.: Development of an integrated 3r end-effector with a cartesian manipulator for pruning apple trees. Comput. Electron. Agricult. 179 (2020). https://doi.org/10.1016/j.compag.2020.105837
Zahid, A., Mahmud, M.S., He, L., Heinemann, P., Choi, D., Schupp, J.: Technological advancements towards developing a robotic pruner for apple trees: a review. Comput. Electron. Agric. 189, 106383 (2021). https://doi.org/10.1016/j.compag.2021.106383
Acknowledgments
This work is co-financed by Component 5 - Capitalization and Business Innovation, integrated in the Resilience Dimension of the Recovery and Resilience Plan within the scope of the Recovery and Resilience Mechanism (MRR) of the European Union (EU), framed in the Next Generation EU, for the period 2021–2026, within project Vine&Wine_PT, with reference 67.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Oliveira, F., Tinoco, V., Valente, A., Pinho, T., Cunha, J.B., Santos, F.N. (2025). Pruning End-Effectors State of the Art Review. In: Santos, M.F., Machado, J., Novais, P., Cortez, P., Moreira, P.M. (eds) Progress in Artificial Intelligence. EPIA 2024. Lecture Notes in Computer Science(), vol 14967. Springer, Cham. https://doi.org/10.1007/978-3-031-73497-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-73497-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73496-0
Online ISBN: 978-3-031-73497-7
eBook Packages: Computer ScienceComputer Science (R0)