Skip to main content

Evaluation of Machine Learning Methods for Fire Risk Assessment from Satellite Imagery

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2024)

Abstract

Recognising the critical role forests play in global biodiversity and the increasing threat of wildfires, this work exploits advanced geoscientific technologies and machine learning techniques to improve fire risk prediction and management. The primary objective is to develop a Convolutional Neural Network (CNN) that maps remotely sensed images to fire risk levels using a refined subset of the FireRisk dataset. The employed dataset contains 7,644 images categorised into five fire risk classes. Based on it, this work benchmarks the performance of InceptionResNetV2 and Vision Transformer models, which have been pre-trained on extensive datasets and fine-tuned for fire risk classification. The achieved custom CNN model achieves an accuracy and F1 score of 72%, demonstrating its potential for this application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, X., Tian, Y., Zheng, C., Liu, X.: Autost-net: A spatiotemporal feature-driven approach for accurate forest fire spread prediction from remote sensing data. Forests 15(4) (2024). https://doi.org/10.3390/f15040705

  2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  3. Dillon, G.K., Gilbertson-Day, J.W.: Wildfire hazard potential for the united states (270-m), version 2020 (2020). https://doi.org/10.2737/rds-2015-0047-3

  4. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale (2020). https://doi.org/10.48550/ARXIV.2010.11929

  5. European Commission. Joint Research Centre.: Forest Fires in Europe, Middle East and North Africa 2017. Publications Office, LU (2018)

    Google Scholar 

  6. Graham, E., Dube, T., Mpakairi, K.S.: Progress in the remote sensing of veld fire occurrence and detection: A review. Afr. J. Ecol. 61(3), 541–553 (2023). https://doi.org/10.1111/aje.13147

    Article  Google Scholar 

  7. Hardt, M., Recht, B., Singer, Y.: Train faster, generalize better: stability of stochastic gradient descent. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 1225–1234. PMLR, New York (2016)

    Google Scholar 

  8. Heo, J., Seo, S., Kang, P.: Exploring the differences in adversarial robustness between vit- and cnn-based models using novel metrics. Comput. Vis. Image Underst. 235, 103800 (2023). https://doi.org/10.1016/j.cviu.2023.103800

    Article  Google Scholar 

  9. Jia, Z., Su, H.: Information-theoretic local minima characterization and regularization (2019). https://doi.org/10.48550/ARXIV.1911.08192

  10. Maxwell, A.E., Warner, T.A., Vanderbilt, B.C., Ramezan, C.A.: Land cover classification and feature extraction from national agriculture imagery program (naip) orthoimagery: A review. Photogramm. Eng. Remote. Sens. 83(11), 737–747 (2017). https://doi.org/10.14358/pers.83.10.737

    Article  Google Scholar 

  11. Giorgiani do Nascimento, R., Viana, F.: Satellite image classification and segmentation with transfer learning. In: AIAA Scitech 2020 Forum. American Institute of Aeronautics and Astronautics (2020). https://doi.org/10.2514/6.2020-1864

  12. Oyedotun, O.K., Ismaeil, K.A., Aouada, D.: Training very deep neural networks: Rethinking the role of skip connections. Neurocomputing 441, 105–117 (2021). https://doi.org/10.1016/j.neucom.2021.02.004

    Article  Google Scholar 

  13. Purnama, M.I., Jaya, I.N.S., Syaufina, L., çoban, H.O., Raihan, M.: Predicting forest fire vulnerability using machine learning approaches in the mediterranean region: a case study of türkiye. IOP Conference Series: Earth and Environmental Science 1315(1), 012056 (2024). https://doi.org/10.1088/1755-1315/1315/1/012056

  14. Qayum, A., Ahmad, F., Arya, R., Singh, R.K.: Predictive modeling of forest fire using geospatial tools and strategic allocation of resources: eforestfire. Stoch. Env. Res. Risk Assess. 34(12), 2259–2275 (2020). https://doi.org/10.1007/s00477-020-01872-3

    Article  Google Scholar 

  15. Shen, S., Seneviratne, S., Wanyan, X., Kirley, M.: Firerisk: A remote sensing dataset for fire risk assessment with benchmarks using supervised and self-supervised learning (2023). https://doi.org/10.48550/ARXIV.2303.07035

  16. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning (2016). https://doi.org/10.48550/ARXIV.1602.07261

  17. Talucci, A.C., Loranty, M.M., Alexander, H.D.: Siberian taiga and tundra fire regimes from 20012020. Environ. Res. Lett. 17(2), 025001 (2022). https://doi.org/10.1088/1748-9326/ac3f07

    Article  Google Scholar 

  18. Wang, D., Zhang, Q., Xu, Y., Zhang, J., Du, B., Tao, D., Zhang, L.: Advancing plain vision transformer towards remote sensing foundation model (2022). https://doi.org/10.48550/ARXIV.2208.03987

  19. Wang, Z., Ma, Y., Zhang, Y., Shang, J.: Review of remote sensing applications in grassland monitoring. Remote Sensing 14(12), 2903 (2022). https://doi.org/10.3390/rs14122903

    Article  Google Scholar 

  20. Zhang, H., Hao, K., Gao, L., Wei, B., Tang, X.: Optimizing deep neural networks through neuroevolution with stochastic gradient descent. IEEE Trans. Cognitive Dev. Syst. 15(1), 111–121 (2023). https://doi.org/10.1109/TCDS.2022.3146327

    Article  Google Scholar 

  21. Zheng, Y., Zhang, G., Tan, S., Yang, Z., Wen, D., Xiao, H.: A forest fire smoke detection model combining convolutional neural network and vision transformer. Frontiers in Forests and Global Change 6 (2023). https://doi.org/10.3389/ffgc.2023.1136969

  22. Zhong, W., Wang, S., Wu, T., Gao, X., Liang, T.: Optimized machine learning model for fire consequence prediction. Fire 7(4) (2024). https://doi.org/10.3390/fire7040114

Download references

Acknowledgments

This work is financially supported by national funds through the FCT/MCTES (PIDDAC), under the RELIABLE project PTDC/EEI-AUT/3522/2020 (DOI 10.54499/PTDC/EEI-AUT/3522/2020), the Associate Laboratory Advanced Production and Intelligent Systems - ARISE LA/P/0112/2020 (DOI 10.54499/LA/P/0112/ 2020) and the Base Funding (UIDB/00147/2020) and Programmatic Funding (UIDP/ 00147/2020) of the R&D Unit Center for Systems and Technologies - SYSTEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Carlos N. Bittencourt .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bittencourt, J.C.N., Costa, D.G., Portugal, P., Vasques, F. (2025). Evaluation of Machine Learning Methods for Fire Risk Assessment from Satellite Imagery. In: Santos, M.F., Machado, J., Novais, P., Cortez, P., Moreira, P.M. (eds) Progress in Artificial Intelligence. EPIA 2024. Lecture Notes in Computer Science(), vol 14967. Springer, Cham. https://doi.org/10.1007/978-3-031-73497-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73497-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73496-0

  • Online ISBN: 978-3-031-73497-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics