Abstract
Recognising the critical role forests play in global biodiversity and the increasing threat of wildfires, this work exploits advanced geoscientific technologies and machine learning techniques to improve fire risk prediction and management. The primary objective is to develop a Convolutional Neural Network (CNN) that maps remotely sensed images to fire risk levels using a refined subset of the FireRisk dataset. The employed dataset contains 7,644 images categorised into five fire risk classes. Based on it, this work benchmarks the performance of InceptionResNetV2 and Vision Transformer models, which have been pre-trained on extensive datasets and fine-tuned for fire risk classification. The achieved custom CNN model achieves an accuracy and F1 score of 72%, demonstrating its potential for this application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, X., Tian, Y., Zheng, C., Liu, X.: Autost-net: A spatiotemporal feature-driven approach for accurate forest fire spread prediction from remote sensing data. Forests 15(4) (2024). https://doi.org/10.3390/f15040705
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848
Dillon, G.K., Gilbertson-Day, J.W.: Wildfire hazard potential for the united states (270-m), version 2020 (2020). https://doi.org/10.2737/rds-2015-0047-3
Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale (2020). https://doi.org/10.48550/ARXIV.2010.11929
European Commission. Joint Research Centre.: Forest Fires in Europe, Middle East and North Africa 2017. Publications Office, LU (2018)
Graham, E., Dube, T., Mpakairi, K.S.: Progress in the remote sensing of veld fire occurrence and detection: A review. Afr. J. Ecol. 61(3), 541–553 (2023). https://doi.org/10.1111/aje.13147
Hardt, M., Recht, B., Singer, Y.: Train faster, generalize better: stability of stochastic gradient descent. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 1225–1234. PMLR, New York (2016)
Heo, J., Seo, S., Kang, P.: Exploring the differences in adversarial robustness between vit- and cnn-based models using novel metrics. Comput. Vis. Image Underst. 235, 103800 (2023). https://doi.org/10.1016/j.cviu.2023.103800
Jia, Z., Su, H.: Information-theoretic local minima characterization and regularization (2019). https://doi.org/10.48550/ARXIV.1911.08192
Maxwell, A.E., Warner, T.A., Vanderbilt, B.C., Ramezan, C.A.: Land cover classification and feature extraction from national agriculture imagery program (naip) orthoimagery: A review. Photogramm. Eng. Remote. Sens. 83(11), 737–747 (2017). https://doi.org/10.14358/pers.83.10.737
Giorgiani do Nascimento, R., Viana, F.: Satellite image classification and segmentation with transfer learning. In: AIAA Scitech 2020 Forum. American Institute of Aeronautics and Astronautics (2020). https://doi.org/10.2514/6.2020-1864
Oyedotun, O.K., Ismaeil, K.A., Aouada, D.: Training very deep neural networks: Rethinking the role of skip connections. Neurocomputing 441, 105–117 (2021). https://doi.org/10.1016/j.neucom.2021.02.004
Purnama, M.I., Jaya, I.N.S., Syaufina, L., çoban, H.O., Raihan, M.: Predicting forest fire vulnerability using machine learning approaches in the mediterranean region: a case study of türkiye. IOP Conference Series: Earth and Environmental Science 1315(1), 012056 (2024). https://doi.org/10.1088/1755-1315/1315/1/012056
Qayum, A., Ahmad, F., Arya, R., Singh, R.K.: Predictive modeling of forest fire using geospatial tools and strategic allocation of resources: eforestfire. Stoch. Env. Res. Risk Assess. 34(12), 2259–2275 (2020). https://doi.org/10.1007/s00477-020-01872-3
Shen, S., Seneviratne, S., Wanyan, X., Kirley, M.: Firerisk: A remote sensing dataset for fire risk assessment with benchmarks using supervised and self-supervised learning (2023). https://doi.org/10.48550/ARXIV.2303.07035
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning (2016). https://doi.org/10.48550/ARXIV.1602.07261
Talucci, A.C., Loranty, M.M., Alexander, H.D.: Siberian taiga and tundra fire regimes from 20012020. Environ. Res. Lett. 17(2), 025001 (2022). https://doi.org/10.1088/1748-9326/ac3f07
Wang, D., Zhang, Q., Xu, Y., Zhang, J., Du, B., Tao, D., Zhang, L.: Advancing plain vision transformer towards remote sensing foundation model (2022). https://doi.org/10.48550/ARXIV.2208.03987
Wang, Z., Ma, Y., Zhang, Y., Shang, J.: Review of remote sensing applications in grassland monitoring. Remote Sensing 14(12), 2903 (2022). https://doi.org/10.3390/rs14122903
Zhang, H., Hao, K., Gao, L., Wei, B., Tang, X.: Optimizing deep neural networks through neuroevolution with stochastic gradient descent. IEEE Trans. Cognitive Dev. Syst. 15(1), 111–121 (2023). https://doi.org/10.1109/TCDS.2022.3146327
Zheng, Y., Zhang, G., Tan, S., Yang, Z., Wen, D., Xiao, H.: A forest fire smoke detection model combining convolutional neural network and vision transformer. Frontiers in Forests and Global Change 6 (2023). https://doi.org/10.3389/ffgc.2023.1136969
Zhong, W., Wang, S., Wu, T., Gao, X., Liang, T.: Optimized machine learning model for fire consequence prediction. Fire 7(4) (2024). https://doi.org/10.3390/fire7040114
Acknowledgments
This work is financially supported by national funds through the FCT/MCTES (PIDDAC), under the RELIABLE project PTDC/EEI-AUT/3522/2020 (DOI 10.54499/PTDC/EEI-AUT/3522/2020), the Associate Laboratory Advanced Production and Intelligent Systems - ARISE LA/P/0112/2020 (DOI 10.54499/LA/P/0112/ 2020) and the Base Funding (UIDB/00147/2020) and Programmatic Funding (UIDP/ 00147/2020) of the R&D Unit Center for Systems and Technologies - SYSTEC.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bittencourt, J.C.N., Costa, D.G., Portugal, P., Vasques, F. (2025). Evaluation of Machine Learning Methods for Fire Risk Assessment from Satellite Imagery. In: Santos, M.F., Machado, J., Novais, P., Cortez, P., Moreira, P.M. (eds) Progress in Artificial Intelligence. EPIA 2024. Lecture Notes in Computer Science(), vol 14967. Springer, Cham. https://doi.org/10.1007/978-3-031-73497-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-73497-7_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73496-0
Online ISBN: 978-3-031-73497-7
eBook Packages: Computer ScienceComputer Science (R0)