Skip to main content

Geometrically-Informed Tool Recommendation in High-Speed Machining

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2024)

Abstract

High Speed Machining (HSM) is a critical process notably found in precision machining, where selecting optimal tools can significantly improve performance. Traditional methods for selecting the optimal tool rely heavily on operator experience, leaving room for automatic solutions. To address this challenge, we propose an innovative recommendation system that leverages machine learning techniques through Deep Factorization Machines (DeepFM). The proposed method utilizes a dataset comprised entirely of theoretically derived annotations provided exclusively by experts in the field of tool manufacturing. Furthermore, we incorporate the geometric characteristics of each tool extracted from a database following the ISO 13399 technical standard. We demonstrate that this implementation is reliable and propose a detailed user feedback framework that will be used to tune the dataset through lifelong learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.he-arc.ch/en/rd-projects/adaptcut/.

References

  1. Iso 13399: Cutting tool data representation and exchange (2006), international technical standard for the computer-interpretable representation and exchange of industrial product data about cutting tools and toolholders

    Google Scholar 

  2. Aggogeri, F., Pellegrini, N., Tagliani, F.L.: Recent advances on machine learning applications in machining processes. Appl. Sci. 11(18), 8764 (2021). https://doi.org/10.3390/app11188764

    Article  Google Scholar 

  3. Awale, A., Inamdar, K.: Review on High Speed Machining of Hard Material. Journal of emerging technologies and innovative research (2015)

    Google Scholar 

  4. Cheng, H.T., et al.: Wide & Deep Learning for Recommender Systems (2016). https://doi.org/10.48550/arXiv.1606.07792

  5. Chicco, D., Warrens, M.J., Jurman, G.: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 7, e623 (2021). https://doi.org/10.7717/peerj-cs.623

    Article  Google Scholar 

  6. de Aguiar, M.M., Diniz, A.E., Pederiva, R.: Correlating surface roughness, tool wear and tool vibration in the milling process of hardened steel using long slender tools. Int. J. Mach. Tools Manuf. 68, 1–10 (2013). https://doi.org/10.1016/j.ijmachtools.2013.01.002

    Article  Google Scholar 

  7. Dewes, R.C., Aspinwall, D.K.: A review of ultra high speed milling of hardened steels. J. Mater. Process. Technol. 69(1), 1–17 (1997). https://doi.org/10.1016/S0924-0136(96)00042-8

    Article  Google Scholar 

  8. Du, M.H., Wang, S.S., Li, A.Z.: Numerical simulations of the influence of the tool geometric parameters on cutting forces and temperatures in high-speed machining of Ti6Al4V. Appl. Mech. Mater. 217–219, 1802–1810 (2012). https://doi.org/10.4028/www.scientific.net/AMM.217-219.1802

    Article  Google Scholar 

  9. Duan, C., Dou, T., Wang, M.: Notice of Retraction: Research on influence of material hardness and cutting conditions on serrated chip formation during high speed machining of AISI 1045 hardened steel. In: 2010 2nd International Conference on Computer Engineering and Technology, vol. 5, pp. V5–552–V5–555 (2010). https://doi.org/10.1109/ICCET.2010.5486196

  10. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: A Factorization-Machine based Neural Network for CTR Prediction (2017)

    Google Scholar 

  11. He, X., Chua, T.S.: Neural Factorization Machines for Sparse Predictive Analytics (2017). https://doi.org/10.48550/arXiv.1708.05027

  12. Jun, Z.: Tool Materials for High Speed Machining and Their Fabrication Technologies. Materials for Mechanical Engineering (2006)

    Google Scholar 

  13. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009). https://doi.org/10.1109/MC.2009.263

    Article  Google Scholar 

  14. Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., Lee, S.I.: From local explanations to global understanding with explainable AI for trees. Nature Mach. Intell. 2(1), 56–67 (2020). https://doi.org/10.1038/s42256-019-0138-9

    Article  Google Scholar 

  15. Muhammed, B., Srimannarayana, P., Das, P., Gautham, B.P.: An intelligent recommender system for tool selection in conventional machining. International Journal of Computer Integrated Manufacturing (2023)

    Google Scholar 

  16. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54–71 (2019). https://doi.org/10.1016/j.neunet.2019.01.012

    Article  Google Scholar 

  17. Qu, Y., et al.: Product-based Neural Networks for User Response Prediction (2016). https://doi.org/10.48550/arXiv.1611.00144

  18. Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining, pp. 995–1000 (2010). https://doi.org/10.1109/ICDM.2010.127

  19. Tang, D.W., He, Z.F., Lv, X.J., Peng, C.: Effect residual stress on material hardness by finite element simulation during the process of high speed cutting. Key Eng. Mater. 719, 23–27 (2017). https://doi.org/10.4028/www.scientific.net/KEM.719.23

    Article  Google Scholar 

  20. Zhang, B., Du, Y., Liu, H., Xin, L., Yang, Y., Li, L.: Experimental study on high-speed milling of SiCf/SiC composites with PCD and CVD diamond tools. Materials 14(13), 3470 (2021). https://doi.org/10.3390/ma14133470

    Article  Google Scholar 

  21. Zhangiang, L., Xing, A.: Cutting tool materials for high speed machining. Progress in Natural Science (2005)

    Google Scholar 

  22. Zhou, G., Yang, X., Zhang, C., Li, Z., Xiao, Z.: Deep learning enabled cutting tool selection for special-shaped machining features of complex products. Adv. Eng. Softw. 133, 1–11 (2019). https://doi.org/10.1016/j.advengsoft.2019.04.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Guerne .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guerne, J. et al. (2025). Geometrically-Informed Tool Recommendation in High-Speed Machining. In: Santos, M.F., Machado, J., Novais, P., Cortez, P., Moreira, P.M. (eds) Progress in Artificial Intelligence. EPIA 2024. Lecture Notes in Computer Science(), vol 14967. Springer, Cham. https://doi.org/10.1007/978-3-031-73497-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73497-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73496-0

  • Online ISBN: 978-3-031-73497-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics