Skip to main content

Assessing the Trustworthiness of Large Language Models on Domain-Specific Questions

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14969))

Included in the following conference series:

  • 187 Accesses

Abstract

Using prompt-engineering and retrieval augmented generation, we can leverage pre-trained Large Language Models to answer domain-specific questions relying on information from textual sources. In this work, we discuss how to assess the trustworthiness of a module that performs such task: how to build a large, representative, and unbiased dataset of questions/answers by automatically generating variations and which metrics to compute. We apply the methodology to a use-case where a smart wheelchair provides answers about its functioning, presenting experimental results on a dataset of more than 1000 questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://chat.openai.com

  2. 2.

    https://rexasi-pro.spindoxlabs.com

  3. 3.

    Available at https://github.com/SandraMNE/TWALLM

  4. 4.

    https://www.ottobock.com/en-gb/wheelchairs/adults/power/juvo-b4

  5. 5.

    https://github.com/jsvine/pdfplumber

  6. 6.

    https://github.com/jfilter/clean-text

  7. 7.

    https://github.com/langchain-ai/langchain

  8. 8.

    https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

  9. 9.

    https://platform.openai.com/docs

References

  1. Damodaran, P.: Parrot: paraphrase generation for NLU. (2021)

    Google Scholar 

  2. Es, S., James, J., Espinosa Anke, L., Schockaert, S.: RAGAs: automated evaluation of retrieval augmented generation. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pp. 150–158 (2024)

    Google Scholar 

  3. Jang, M., Lukasiewicz, T.: Consistency analysis of ChatGPT. arXiv preprint arXiv:2303.06273 (2023)

  4. Johnson, D., et al.: Assessing the accuracy and reliability of AI-generated medical responses: an evaluation of the Chat-GPT model. Res Sq [Preprint]. 28 Feb 2023. rs.3.rs-2566942. https://doi.org/10.21203/rs.3.rs-2566942/v1. PMID: 36909565; PMCID: PMC10002821

  5. Jungiewicz, M., Smywiński-Pohl, A.: Towards textual data augmentation for neural networks: synonyms and maximum loss. Comput. Sci. 20, 57–83 (2019)

    Article  Google Scholar 

  6. Kale, M., Rastogi, A.: Text-to-text pre-training for data-to-text tasks. In: Proceedings of the 13th International Conference on Natural Language Generation, pp. 97–102. Association for Computational Linguistics (2020)

    Google Scholar 

  7. Khatun, A., Brown, D.G.: Reliability check: an analysis of GPT-3’s response to sensitive topics and prompt wording. arXiv preprint arXiv:2306.06199 (2023)

  8. Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP tasks. In: Advances in Neural Information Processing Systems, vol. 33, pp. 9459–9474 (2020)

    Google Scholar 

  9. Li, J., et al.: Are you asking GPT-4 medical questions properly?-prompt engineering in consistency and reliability with evidence-based guidelines for ChatGPT-4: A pilot study. npj Digit. Med. 7, 41 (2023)

    Google Scholar 

  10. Liu, Y., et al.: Trustworthy LLMs: a survey and guideline for evaluating large language models’ alignment. arXiv preprint arXiv:2308.05374 (2023)

  11. Sennrich, R., Haddow, B., Birch, A.: Improving neural machine translation models with monolingual data. arXiv preprint arXiv:1511.06709 (2015)

  12. Shen, X., Chen, Z., Backes, M., Zhang, Y.: In ChatGPT we trust? measuring and characterizing the reliability of ChatGPT. arXiv preprint arXiv:2304.08979 (2023)

  13. Si, C., et al.: Prompting GPT-3 to be reliable. arXiv preprint arXiv:2210.09150 (2022)

  14. Silva, A., Schrum, M., Hedlund-Botti, E., Gopalan, N., Gombolay, M.: Explainable artificial intelligence: evaluating the objective and subjective impacts of XAI on human-agent interaction. Int. J. Hum. Comput. Interact. 39(7), 1390–1404 (2023)

    Article  Google Scholar 

  15. Suárez, A., et al.: Unveiling the ChatGPT phenomenon: evaluating the consistency and accuracy of endodontic question answers. Int. Endod. J. 57(1), 108–113 (2024)

    Article  Google Scholar 

  16. Wang, W.Y., Yang, D.: That’s so annoying!!!: a lexical and frame-semantic embedding based data augmentation approach to automatic categorization of annoying behaviors using# petpeeve tweets. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2557–2563 (2015)

    Google Scholar 

  17. Zhang, J., Zhao, Y., Saleh, M., Liu, P.J.: PEGASUS: pre-training with extracted gap-sentences for abstractive summarization. arXiv:1912.08777 (2019)

  18. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  19. Zhong, L., Wang, Z.: A study on robustness and reliability of large language model code generation. arXiv preprint arXiv:2308.10335 (2023)

Download references

Acknowledgments

This work was supported in part by REXASI-PRO H-EU project, call HORIZON-CL4-2021-HUMAN-01-01, Grant agreement no. 101070028. (Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Mitrović .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mitrović, S., Mazzola, M., Larcher, R., Guzzi, J. (2025). Assessing the Trustworthiness of Large Language Models on Domain-Specific Questions. In: Santos, M.F., Machado, J., Novais, P., Cortez, P., Moreira, P.M. (eds) Progress in Artificial Intelligence. EPIA 2024. Lecture Notes in Computer Science(), vol 14969. Springer, Cham. https://doi.org/10.1007/978-3-031-73503-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73503-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73502-8

  • Online ISBN: 978-3-031-73503-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics