Skip to main content

End-to-End Rate-Distortion Optimized 3D Gaussian Representation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15116))

Included in the following conference series:

Abstract

3D Gaussian Splatting (3DGS) has become an emerging technique with remarkable potential in 3D representation and image rendering. However, the substantial storage overhead of 3DGS significantly impedes its practical applications. In this work, we formulate the compact 3D Gaussian learning as an end-to-end Rate-Distortion Optimization (RDO) problem and propose RDO-Gaussian that can achieve flexible and continuous rate control. RDO-Gaussian addresses two main issues that exist in current schemes: 1) Different from prior endeavors that minimize the rate under the fixed distortion, we introduce dynamic pruning and entropy-constrained vector quantization (ECVQ) that optimize the rate and distortion at the same time. 2) Previous works treat the colors of each Gaussian equally, while we model the colors of different regions and materials with learnable numbers of parameters. We verify our method on both real and synthetic scenes, showcasing that RDO-Gaussian greatly reduces the size of 3D Gaussian over 40\(\times \), and surpasses existing methods in rate-distortion performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimization of nonlinear transform codes for perceptual quality. In: 2016 Picture Coding Symposium (PCS), pp. 1–5. IEEE (2016)

    Google Scholar 

  2. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. In: International Conference on Learning Representations (2017)

    Google Scholar 

  3. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: ICCV (2021)

    Google Scholar 

  4. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: Unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)

    Google Scholar 

  5. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)

  6. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20

    Chapter  Google Scholar 

  7. Chou, P.A., Lookabaugh, T., Gray, R.M.: Entropy-constrained vector quantization. IEEE Trans. Acoust. Speech Signal Process. 37(1), 31–42 (1989)

    Article  MathSciNet  Google Scholar 

  8. Deng, C.L., Tartaglione, E.: Compressing explicit voxel grid representations: fast nerfs become also small. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1236–1245 (2023)

    Google Scholar 

  9. Duan, Y., Wei, F., Dai, Q., He, Y., Chen, W., Chen, B.: 4D gaussian splatting: towards efficient novel view synthesis for dynamic scenes. arXiv preprint arXiv:2402.03307 (2024)

  10. Fan, Z., Wang, K., Wen, K., Zhu, Z., Xu, D., Wang, Z.: LightGaussian: Unbounded 3D gaussian compression with 15x reduction and 200+ FPS. arXiv preprint arXiv:2311.17245 (2023)

  11. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5501–5510 (2022)

    Google Scholar 

  12. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression, vol. 159. Springer, Heidelberg (2012)

    Google Scholar 

  13. Girish, S., Shrivastava, A., Gupta, K.: SHACIRA: scalable HAsh-grid compression for implicit neural representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 17513–17524 (2023)

    Google Scholar 

  14. Graziosi, D., Nakagami, O., Kuma, S., Zaghetto, A., Suzuki, T., Tabatabai, A.: An overview of ongoing point cloud compression standardization activities: video-based (V-PCC) and geometry-based (G-PCC). APSIPA Trans. Signal Inf. Process. 9, e13 (2020)

    Article  Google Scholar 

  15. Hedman, P., Philip, J., Price, T., Frahm, J.M., Drettakis, G., Brostow, G.: Deep blending for free-viewpoint image-based rendering. ACM Trans. Graph. (ToG) 37(6), 1–15 (2018)

    Article  Google Scholar 

  16. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023)

    Google Scholar 

  17. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. (ToG) 36(4), 1–13 (2017)

    Article  Google Scholar 

  18. Lee, J.C., Rho, D., Sun, X., Ko, J.H., Park, E.: Compact 3D gaussian representation for radiance field. arXiv preprint arXiv:2311.13681 (2023)

  19. Li, L., Shen, Z., Wang, Z., Shen, L., Bo, L.: Compressing volumetric radiance fields to 1 MB. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4222–4231 (2023)

    Google Scholar 

  20. Liu, X., et al.: HumanGaussian: text-driven 3D human generation with gaussian splatting. arXiv preprint arXiv:2311.17061 (2023)

  21. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  22. Morgenstern, W., Barthel, F., Hilsmann, A., Eisert, P.: Compact 3D scene representation via self-organizing Gaussian grids. arXiv preprint arXiv:2312.13299 (2023)

  23. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)

    Article  Google Scholar 

  24. Navaneet, K., Meibodi, K.P., Koohpayegani, S.A., Pirsiavash, H.: Compact3D: compressing gaussian splat radiance field models with vector quantization. arXiv preprint arXiv:2311.18159 (2023)

  25. Peng, S., Jiang, C., Liao, Y., Niemeyer, M., Pollefeys, M., Geiger, A.: Shape as points: a differentiable Poisson solver. Adv. Neural. Inf. Process. Syst. 34, 13032–13044 (2021)

    Google Scholar 

  26. Reiser, C., et al.: MeRF: memory-efficient radiance fields for real-time view synthesis in unbounded scenes. ACM Trans. Graph. (TOG) 42(4), 1–12 (2023)

    Article  Google Scholar 

  27. Rho, D., Lee, B., Nam, S., Lee, J.C., Ko, J.H., Park, E.: Masked wavelet representation for compact neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20680–20690 (2023)

    Google Scholar 

  28. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5459–5469 (2022)

    Google Scholar 

  29. Takikawa, T., et al.: Variable bitrate neural fields. In: ACM SIGGRAPH 2022 Conference Proceedings, pp. 1–9 (2022)

    Google Scholar 

  30. Tang, J., Chen, X., Wang, J., Zeng, G.: Compressible-composable nerf via rank-residual decomposition. Adv. Neural. Inf. Process. Syst. 35, 14798–14809 (2022)

    Google Scholar 

  31. Tang, J., Ren, J., Zhou, H., Liu, Z., Zeng, G.: DreamGaussian: generative gaussian splatting for efficient 3D content creation. arXiv preprint arXiv:2309.16653 (2023)

  32. Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-NeRF: structured view-dependent appearance for neural radiance fields. In: CVPR (2022)

    Google Scholar 

  33. Wang, L., et al.: Fourier plenoctrees for dynamic radiance field rendering in real-time. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13524–13534 (2022)

    Google Scholar 

  34. Wu, G., et al.: 4D Gaussian splatting for real-time dynamic scene rendering. arXiv preprint arXiv:2310.08528 (2023)

  35. Xu, Q., et al.: Point-NeRF: point-based neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5438–5448 (2022)

    Google Scholar 

  36. Yi, T., et al.: GaussianDreamer: fast generation from text to 3D Gaussians by bridging 2D and 3D diffusion models. In: CVPR (2024)

    Google Scholar 

  37. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5752–5761 (2021)

    Google Scholar 

  38. Yu, Z., Chen, A., Huang, B., Sattler, T., Geiger, A.: Mip-splatting: alias-free 3D Gaussian splatting (2023)

    Google Scholar 

  39. Zhao, T., Chen, J., Leng, C., Cheng, J.: TinyNeRF: towards 100 x compression of voxel radiance fields. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 3588–3596 (2023)

    Google Scholar 

  40. Zhu, H., He, T., Chen, Z.: CMC: few-shot novel view synthesis via cross-view multiplane consistency. arXiv preprint arXiv:2402.16407 (2024)

  41. Zhu, H., He, T., Li, X., Li, B., Chen, Z.: Is vanilla MLP in neural radiance field enough for few-shot view synthesis? arXiv preprint arXiv:2403.06092 (2024)

Download references

Acknowledgements

This work was supported in part by NSFC under Grant 62371434, 62021001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henan Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6897 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H. et al. (2025). End-to-End Rate-Distortion Optimized 3D Gaussian Representation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15116. Springer, Cham. https://doi.org/10.1007/978-3-031-73636-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73636-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73635-3

  • Online ISBN: 978-3-031-73636-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics