Skip to main content

PHOCUS: Physics-Based Deconvolution for Ultrasound Resolution Enhancement

  • Conference paper
  • First Online:
Simplifying Medical Ultrasound (ASMUS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15186))

Included in the following conference series:

  • 167 Accesses

Abstract

Ultrasound is widely used in medical diagnostics allowing for accessible and powerful imaging but suffers from resolution limitations due to diffraction and the finite aperture of the imaging system, which restricts diagnostic use. The impulse function of an ultrasound imaging system is called the point spread function (PSF), which is convolved with the spatial distribution of reflectors in the image formation process. Recovering high-resolution reflector distributions by removing image distortions induced by the convolution process improves image clarity and detail. Conventionally, deconvolution techniques attempt to rectify the imaging system’s dependent PSF, working directly on the radio-frequency (RF) data. However, RF data is often not readily accessible. Therefore, we introduce a physics-based deconvolution process using a modeled PSF, working directly on the more commonly available B-mode images. By leveraging Implicit Neural Representations (INRs), we learn a continuous mapping from spatial locations to their respective echogenicity values, effectively compensating for the discretized image space. Our contribution consists of a novel methodology for retrieving a continuous echogenicity map directly from a B-mode image through a differentiable physics-based rendering pipeline for ultrasound resolution enhancement. We qualitatively and quantitatively evaluate our approach on synthetic data, demonstrating improvements over traditional methods in metrics such as PSNR and SSIM. Furthermore, we show qualitative enhancements on an ultrasound phantom and an in-vivo acquisition of a carotid artery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.cirsinc.com/wp-content/uploads/2020/12/054GS-UG-062119.pdf.

  2. 2.

    https://github.com/Felixduelmer/phocus.

References

  1. Alessandrini, M., Maggio, S., Porée, J., De Marchi, L., Speciale, N., Franceschini, E., Bernard, O., Basset, O.: A restoration framework for ultrasonic tissue characterization. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 58(11), 2344–2360 (2011)

    Article  Google Scholar 

  2. Dalitz, C., Pohle-Frohlich, R., Michalk, T.: Point spread functions and deconvolution of ultrasonic images. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 62(3), 531–544 (2015)

    Article  MATH  Google Scholar 

  3. Foroozan, F., O’Reilly, M.A., Hynynen, K.: Microbubble localization for three-dimensional superresolution ultrasound imaging using curve fitting and deconvolution methods. IEEE Transactions on Biomedical Engineering 65(12), 2692–2703 (2018)

    Article  MATH  Google Scholar 

  4. Goudarzi, S., Basarab, A., Rivaz, H.: A unifying approach to inverse problems of ultrasound beamforming and deconvolution. IEEE Transactions on Computational Imaging 9, 197–209 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jensen, J.A.: A model for the propagation and scattering of ultrasound in tissue. The Journal of the Acoustical Society of America 89(1), 182–190 (1991)

    Article  MATH  Google Scholar 

  6. Jensen, J.A.: Deconvolution of ultrasound images. Ultrasonic imaging 14(1), 1–15 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Khan, S., Huh, J., Ye, J.C.: Unsupervised deconvolution neural network for high quality ultrasound imaging. In: 2020 IEEE International Ultrasonics Symposium (IUS). pp. 1–4. IEEE (2020)

    Google Scholar 

  8. Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astronomical Journal, Vol. 79, p. 745 (1974) 79,  745 (1974)

    Google Scholar 

  9. Maggio, S., Palladini, A., De Marchi, L., Alessandrini, M., Speciale, N., Masetti, G.: Predictive deconvolution and hybrid feature selection for computer-aided detection of prostate cancer. IEEE transactions on medical imaging 29(2), 455–464 (2009)

    Article  Google Scholar 

  10. Michailovich, O., Tannenbaum, A.: Blind deconvolution of medical ultrasound images: A parametric inverse filtering approach. IEEE Transactions on Image Processing 16(12), 3005–3019 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM transactions on graphics (TOG) 41(4), 1–15 (2022)

    Article  MATH  Google Scholar 

  12. Ng, J., Prager, R., Kingsbury, N., Treece, G., Gee, A.: Modeling ultrasound imaging as a linear, shift-variant system. ieee transactions on ultrasonics, ferroelectrics, and frequency control 53(3), 549–563 (2006)

    Google Scholar 

  13. Walker, W.F., Trahey, G.E.: The application of k-space in pulse echo ultrasound. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 45(3), 541–558 (1998)

    Article  MATH  Google Scholar 

  14. Wang, H., Zhou, M., Wei, D., Li, Y., Zheng, Y.: Mepnet: a model-driven equivariant proximal network for joint sparse-view reconstruction and metal artifact reduction in ct images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 109–120. Springer (2023)

    Google Scholar 

  15. Wysocki, M., Azampour, M.F., Eilers, C., Busam, B., Salehi, M., Navab, N.: Ultra-nerf: neural radiance fields for ultrasound imaging. In: Medical Imaging with Deep Learning. pp. 382–401. PMLR (2024)

    Google Scholar 

  16. Xie, Y., Takikawa, T., Saito, S., Litany, O., Yan, S., Khan, N., Tombari, F., Tompkin, J., Sitzmann, V., Sridhar, S.: Neural fields in visual computing and beyond. In: Computer Graphics Forum. vol. 41, pp. 641–676. Wiley Online Library (2022)

    Google Scholar 

  17. Zemp, R.J., Abbey, C.K., Insana, M.F.: Linear system models for ultrasonic imaging: Application to signal statistics. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 50(6), 642–654 (2003)

    Article  MATH  Google Scholar 

  18. Zha, R., Zhang, Y., Li, H.: Naf: Neural attenuation fields for sparse-view cbct reconstruction. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 442–452. Springer (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Duelmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duelmer, F., Simson, W., Azampour, M.F., Wysocki, M., Karlas, A., Navab, N. (2025). PHOCUS: Physics-Based Deconvolution for Ultrasound Resolution Enhancement. In: Gomez, A., Khanal, B., King, A., Namburete, A. (eds) Simplifying Medical Ultrasound. ASMUS 2024. Lecture Notes in Computer Science, vol 15186. Springer, Cham. https://doi.org/10.1007/978-3-031-73647-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73647-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73646-9

  • Online ISBN: 978-3-031-73647-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics