Skip to main content

Label-Free Neural Semantic Image Synthesis

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15111))

Included in the following conference series:

  • 203 Accesses

Abstract

Recent work has shown great progress in integrating spatial conditioning to control large, pre-trained text-to-image diffusion models. Despite these advances, existing methods describe the spatial image content using hand-crafted conditioning inputs, which are either semantically ambiguous (e.g., edges) or require expensive manual annotations (e.g., semantic segmentation). To address these limitations, we propose a new label-free way of conditioning diffusion models to enable fine-grained spatial control. We introduce the concept of neural semantic image synthesis, which uses neural layouts extracted from pre-trained foundation models as conditioning. These layouts provide rich descriptions of the desired image, containing both semantics and detailed geometry of the scene. We experimentally show that images synthesized via neural semantic image synthesis achieve similar or superior pixel-level alignment of semantic classes compared to those created using expensive semantic label maps. At the same time, they capture better semantics, instance separation, and object orientation than other label-free conditioning options, such as edges or depth. Moreover, we show that images generated by neural layout conditioning can effectively augment real data for training various perception tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Midjourney (2023). https://www.midjourney.com/

  2. Amir, S., Gandelsman, Y., Bagon, S., Dekel, T.: Deep vit features as dense visual descriptors. arXiv preprint arXiv:2112.05814 (2021)

  3. Balaji, Y., et al.: ediffi: text-to-image diffusion models with an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324 (2022)

  4. Caesar, H., Uijlings, J., Ferrari, V.: Coco-stuff: thing and stuff classes in context. In: CVPR (2018)

    Google Scholar 

  5. Canny, J.: A computational approach to edge detection. TPAMI 8, 679–698 (1986)

    Article  Google Scholar 

  6. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)

    Google Scholar 

  7. Chen, X., Huang, L., Liu, Y., Shen, Y., Zhao, D., Zhao, H.: Anydoor: zero-shot object-level image customization. arXiv preprint arXiv:2307.09481 (2023)

  8. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: CVPR (2022)

    Google Scholar 

  9. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  10. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: NeurIPS (2014)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: ICCV (2016)

    Google Scholar 

  12. Hedlin, E., et al.: Unsupervised semantic correspondence using stable diffusion. arXiv preprint arXiv:2305.15581 (2023)

  13. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS (2017)

    Google Scholar 

  14. Hu, Y., et al.: TIFA: accurate and interpretable text-to-image faithfulness evaluation with question answering. arXiv preprint arXiv:2303.11897 (2023)

  15. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  16. Ju, X., Zeng, A., Bian, Y., Liu, S., Xu, Q.: Pnp inversion: boosting diffusion-based editing with 3 lines of code. In: ICLR (2024)

    Google Scholar 

  17. Li, F., et al.: Mask dino: towards a unified transformer-based framework for object detection and segmentation. In: CVPR (2023)

    Google Scholar 

  18. Li, J., Li, D., Xiong, C., Hoi, S.: Blip: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: ICML (2022)

    Google Scholar 

  19. Li, Y., et al.: Gligen: open-set grounded text-to-image generation. In: CVPR (2023)

    Google Scholar 

  20. Li, Y., Keuper, M., Zhang, D., Khoreva, A.: Adversarial supervision makes layout-to-image diffusion models thrive. In: ICLR (2024)

    Google Scholar 

  21. Lin, B., Zhang, Y.: LibMTL: a python library for multi-task learning. J. Mach. Learn. Res. 24(209), 1–7 (2023)

    Google Scholar 

  22. Mou, C., et al.: T2i-adapter: learning adapters to dig out more controllable ability for text-to-image diffusion models. arXiv preprint arXiv:2302.08453 (2023)

  23. Oquab, M., et al.: Dinov2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

  24. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)

    Google Scholar 

  25. Qin, C., et al.: Gluegen: plug and play multi-modal encoders for x-to-image generation. In: ICCV (2023)

    Google Scholar 

  26. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

    Google Scholar 

  27. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 (2022)

  28. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer. TPAMI (2022)

    Google Scholar 

  29. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)

    Google Scholar 

  30. Saharia, C., et al.: Palette: image-to-image diffusion models. In: SIGGRAPH (2022)

    Google Scholar 

  31. Sakaridis, C., Dai, D., Van Gool, L.: Acdc: the adverse conditions dataset with correspondences for semantic driving scene understanding. In: ICCV (2021)

    Google Scholar 

  32. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from rgbd images. In: ECCV, pp. 746–760 (2012)

    Google Scholar 

  33. Sushko, V., Schönfeld, E., Zhang, D., Gall, J., Schiele, B., Khoreva, A.: Oasis: only adversarial supervision for semantic image synthesis. IJCV 130, 2903–2923 (2022)

    Article  Google Scholar 

  34. Tan, Z., et al.: Efficient semantic image synthesis via class-adaptive normalization. TPAMI 44, 4852–4866 (2021)

    Google Scholar 

  35. Tumanyan, N., Geyer, M., Bagon, S., Dekel, T.: Plug-and-play diffusion features for text-driven image-to-image translation. In: CVPR (2023)

    Google Scholar 

  36. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  37. Wang, T., et al.: Pretraining is all you need for image-to-image translation. arXiv preprint arXiv:2205.12952 (2022)

  38. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional gans. In: CVPR (2018)

    Google Scholar 

  39. Wang, Y., Qi, L., Chen, Y.C., Zhang, X., Jia, J.: Image synthesis via semantic composition. In: ICCV (2021)

    Google Scholar 

  40. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers. In: NeurIPS (2021)

    Google Scholar 

  41. Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV (2015)

    Google Scholar 

  42. Xu, S., Huang, Y., Pan, J., Ma, Z., Chai, J.: Inversion-free image editing with natural language. In: CVPR (2024)

    Google Scholar 

  43. Xue, H., Huang, Z., Sun, Q., Song, L., Zhang, W.: Freestyle layout-to-image synthesis. In: CVPR (2023)

    Google Scholar 

  44. Ye, H., Zhang, J., Liu, S., Han, X., Yang, W.: Ip-adapter: text compatible image prompt adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721 (2023)

  45. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: CVPR (2017)

    Google Scholar 

  46. Zhang, J., et al.: A tale of two features: stable diffusion complements dino for zero-shot semantic correspondence. In: NeurIPS (2023)

    Google Scholar 

  47. Zhang, L., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: ICCV (2023)

    Google Scholar 

  48. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  49. Zhao, S., et al.: Uni-controlnet: all-in-one control to text-to-image diffusion models. In: NeurIPS (2023)

    Google Scholar 

  50. Zhao, W., Rao, Y., Liu, Z., Liu, B., Zhou, J., Lu, J.: Unleashing text-to-image diffusion models for visual perception. In: ICCV (2023)

    Google Scholar 

  51. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: CVPR (2017)

    Google Scholar 

  52. Zhou, C., Loy, C.C., Dai, B.: Extract free dense labels from clip. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, pp. 696–712. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19815-1_40

    Chapter  Google Scholar 

  53. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: NeurIPS (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayi Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 26346 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J. et al. (2025). Label-Free Neural Semantic Image Synthesis. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15111. Springer, Cham. https://doi.org/10.1007/978-3-031-73668-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73668-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73667-4

  • Online ISBN: 978-3-031-73668-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics