Abstract
Recent work has shown great progress in integrating spatial conditioning to control large, pre-trained text-to-image diffusion models. Despite these advances, existing methods describe the spatial image content using hand-crafted conditioning inputs, which are either semantically ambiguous (e.g., edges) or require expensive manual annotations (e.g., semantic segmentation). To address these limitations, we propose a new label-free way of conditioning diffusion models to enable fine-grained spatial control. We introduce the concept of neural semantic image synthesis, which uses neural layouts extracted from pre-trained foundation models as conditioning. These layouts provide rich descriptions of the desired image, containing both semantics and detailed geometry of the scene. We experimentally show that images synthesized via neural semantic image synthesis achieve similar or superior pixel-level alignment of semantic classes compared to those created using expensive semantic label maps. At the same time, they capture better semantics, instance separation, and object orientation than other label-free conditioning options, such as edges or depth. Moreover, we show that images generated by neural layout conditioning can effectively augment real data for training various perception tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Midjourney (2023). https://www.midjourney.com/
Amir, S., Gandelsman, Y., Bagon, S., Dekel, T.: Deep vit features as dense visual descriptors. arXiv preprint arXiv:2112.05814 (2021)
Balaji, Y., et al.: ediffi: text-to-image diffusion models with an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324 (2022)
Caesar, H., Uijlings, J., Ferrari, V.: Coco-stuff: thing and stuff classes in context. In: CVPR (2018)
Canny, J.: A computational approach to edge detection. TPAMI 8, 679–698 (1986)
Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)
Chen, X., Huang, L., Liu, Y., Shen, Y., Zhao, D., Zhao, H.: Anydoor: zero-shot object-level image customization. arXiv preprint arXiv:2307.09481 (2023)
Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: CVPR (2022)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)
Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: NeurIPS (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: ICCV (2016)
Hedlin, E., et al.: Unsupervised semantic correspondence using stable diffusion. arXiv preprint arXiv:2305.15581 (2023)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS (2017)
Hu, Y., et al.: TIFA: accurate and interpretable text-to-image faithfulness evaluation with question answering. arXiv preprint arXiv:2303.11897 (2023)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
Ju, X., Zeng, A., Bian, Y., Liu, S., Xu, Q.: Pnp inversion: boosting diffusion-based editing with 3 lines of code. In: ICLR (2024)
Li, F., et al.: Mask dino: towards a unified transformer-based framework for object detection and segmentation. In: CVPR (2023)
Li, J., Li, D., Xiong, C., Hoi, S.: Blip: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: ICML (2022)
Li, Y., et al.: Gligen: open-set grounded text-to-image generation. In: CVPR (2023)
Li, Y., Keuper, M., Zhang, D., Khoreva, A.: Adversarial supervision makes layout-to-image diffusion models thrive. In: ICLR (2024)
Lin, B., Zhang, Y.: LibMTL: a python library for multi-task learning. J. Mach. Learn. Res. 24(209), 1–7 (2023)
Mou, C., et al.: T2i-adapter: learning adapters to dig out more controllable ability for text-to-image diffusion models. arXiv preprint arXiv:2302.08453 (2023)
Oquab, M., et al.: Dinov2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)
Qin, C., et al.: Gluegen: plug and play multi-modal encoders for x-to-image generation. In: ICCV (2023)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 (2022)
Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer. TPAMI (2022)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)
Saharia, C., et al.: Palette: image-to-image diffusion models. In: SIGGRAPH (2022)
Sakaridis, C., Dai, D., Van Gool, L.: Acdc: the adverse conditions dataset with correspondences for semantic driving scene understanding. In: ICCV (2021)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from rgbd images. In: ECCV, pp. 746–760 (2012)
Sushko, V., Schönfeld, E., Zhang, D., Gall, J., Schiele, B., Khoreva, A.: Oasis: only adversarial supervision for semantic image synthesis. IJCV 130, 2903–2923 (2022)
Tan, Z., et al.: Efficient semantic image synthesis via class-adaptive normalization. TPAMI 44, 4852–4866 (2021)
Tumanyan, N., Geyer, M., Bagon, S., Dekel, T.: Plug-and-play diffusion features for text-driven image-to-image translation. In: CVPR (2023)
Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
Wang, T., et al.: Pretraining is all you need for image-to-image translation. arXiv preprint arXiv:2205.12952 (2022)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional gans. In: CVPR (2018)
Wang, Y., Qi, L., Chen, Y.C., Zhang, X., Jia, J.: Image synthesis via semantic composition. In: ICCV (2021)
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers. In: NeurIPS (2021)
Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV (2015)
Xu, S., Huang, Y., Pan, J., Ma, Z., Chai, J.: Inversion-free image editing with natural language. In: CVPR (2024)
Xue, H., Huang, Z., Sun, Q., Song, L., Zhang, W.: Freestyle layout-to-image synthesis. In: CVPR (2023)
Ye, H., Zhang, J., Liu, S., Han, X., Yang, W.: Ip-adapter: text compatible image prompt adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721 (2023)
Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: CVPR (2017)
Zhang, J., et al.: A tale of two features: stable diffusion complements dino for zero-shot semantic correspondence. In: NeurIPS (2023)
Zhang, L., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: ICCV (2023)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
Zhao, S., et al.: Uni-controlnet: all-in-one control to text-to-image diffusion models. In: NeurIPS (2023)
Zhao, W., Rao, Y., Liu, Z., Liu, B., Zhou, J., Lu, J.: Unleashing text-to-image diffusion models for visual perception. In: ICCV (2023)
Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: CVPR (2017)
Zhou, C., Loy, C.C., Dai, B.: Extract free dense labels from clip. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, pp. 696–712. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19815-1_40
Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: NeurIPS (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, J. et al. (2025). Label-Free Neural Semantic Image Synthesis. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15111. Springer, Cham. https://doi.org/10.1007/978-3-031-73668-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-73668-1_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73667-4
Online ISBN: 978-3-031-73668-1
eBook Packages: Computer ScienceComputer Science (R0)