Skip to main content

Nudging Strategies for User Journeys: Take a Path on the Wild Side

  • Chapter
  • First Online:
Real Time and Such

Abstract

With the emergence of service orientation as a major business driver, companies crucially depend on understanding the flow of their services from the user’s perspective. Models of these user journeys help to create a common understanding, but in practice their availability is limited. Process mining addresses the challenge of creating models that enable processes to be analyzed. Our goal is to mine user journey models. In this paper, we use automata learning algorithms to create behavioral models of stochastic user behavior from a given data set. The initially learned automaton is annotated with time and cost variables to capture aspects of the user experience. In a game scenario, we can model check properties of these enriched automata regarding the user behavior. Using Uppaal, we can synthesize strategies for nudging users into a different behavior. The approach is illustrated in a case study with a large dataset describing user behavior for a well-known music streaming application. Can we synthesize a strategy that nudges a computer science professor to take a path on the wild side of the usual listening habits?

This work is part of the Smart Journey Mining project, funded by the Research Council of Norway (Grant No. 312198).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/smartjourneymining/spotify_journey/releases/tag/wang2024

  2. 2.

    https://www.aicrowd.com/challenges/spotify-sequential-skip-prediction-challenge

  3. 3.

    The particular individual is not an author of this paper.

  4. 4.

    https://github.com/spotipy-dev/spotipy

  5. 5.

    https://github.com/smartjourneymining/spotify_journey/releases/tag/wang2024

  6. 6.

    https://uppaal.org/

References

  1. van der Aalst, W.M.P.: Process Mining-Data Science in Action. Springer, 2 edn. (2016), https://doi.org/10.1007/978-3-662-49851-4

  2. Agostinelli, S., Chiariello, F., Maggi, F.M., Marrella, A., Patrizi, F.: Process mining meets model learning: discovering deterministic finite state automata from event logs for business process analysis. Inf. Syst. 114, 102180 (2023). https://doi.org/10.1016/j.is.2023.102180

    Article  Google Scholar 

  3. Aichernig, B.K., et al.: Learning and statistical model checking of system response times. Softw. Qual. J. 27(2), 757–795 (2019). https://doi.org/10.1007/s11219-018-9432-8

    Article  Google Scholar 

  4. Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: learning timed automata efficiently. In: Lee, R., Jha, S., Mavridou, A. (eds.) Proc. 12th International NASA Formal Methods Symposium (NFM 2020). Lecture Notes in Computer Science, vol. 12229, pp. 1–19. Springer (2020), https://doi.org/10.1007/978-3-030-55754-6_1

  5. Aichernig, B.K., Schumi, R.: How fast is MQTT? - Statistical model checking and testing of IoT protocols. In: McIver, A., Horváth, A. (eds.) Proc. 15th International Conference on Quantitative Evaluation of Systems (QEST 2018). Lecture Notes in Computer Science, vol. 11024, pp. 36–52. Springer (2018), https://doi.org/10.1007/978-3-319-99154-2_3

  6. Anderson, A., Maystre, L., Anderson, I., Mehrotra, R., Lalmas, M.: Algorithmic effects on the diversity of consumption on Spotify. In: Huang, Y., King, I., Liu, T., van Steen, M. (eds.) Proc. The Web Conference 2020 (WWW’20). pp. 2155–2165. ACM / IW3C2 (2020), https://doi.org/10.1145/3366423.3380281

  7. Angluin, D.: Identifying languages from stochastic examples. Tech. rep., Yale University (1988), https://cpsc.yale.edu/sites/default/files/files/tr614.pdf

  8. Behrmann, G., et al.: UPPAAL-Tiga: time for playing games! In: Damm, W., Hermanns, H. (eds.) Proc. 19th International Conference on Computer Aided Verification (CAV 2007). Lecture Notes in Computer Science, vol. 4590, pp. 121–125. Springer (2007), https://doi.org/10.1007/978-3-540-73368-3_14

  9. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced timed automata: algorithms and applications. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) Proc. Third International Symposium, on Formal Methods for Components and Objects (FMCO 2004). Lecture Notes in Computer Science, vol. 3657, pp. 162–182. Springer (2005), https://doi.org/10.1007/11561163_8

  10. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-defined schedulers for real-time concurrent objects. Innov. Syst. Softw. Eng. 9(1), 29–43 (2013). https://doi.org/10.1007/S11334-012-0184-5

    Article  Google Scholar 

  11. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Quantitative analysis of real-time systems using priced timed automata. Commun. ACM 54(9), 78–87 (2011). https://doi.org/10.1145/1995376.1995396

    Article  Google Scholar 

  12. Brost, B., Mehrotra, R., Jehan, T.: The music streaming sessions dataset. In: Liu, L., White, R.W., Mantrach, A., Silvestri, F., McAuley, J.J., Baeza-Yates, R., Zia, L. (eds.) Proc. World Wide Web Conference (WWW 2019). pp. 2594–2600. ACM (2019), https://doi.org/10.1145/3308558.3313641

  13. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a state merging method. In: Carrasco, R.C., Oncina, J. (eds.) Proc. 2nd International Colloquium Grammatical Inference and Applications (ICGI-94). Lecture Notes in Computer Science, vol. 862, pp. 139–152. Springer (1994), https://doi.org/10.1007/3-540-58473-0_144

  14. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) Proc. 16th International Conference on Concurrency Theory (CONCUR 2005), Lecture Notes in Computer Science, vol. 3653, pp. 66–80. Springer (2005), https://doi.org/10.1007/11539452_9

  15. Chang, S., Lee, S., Lee, K.: Sequential skip prediction with few-shot in streamed music contents. CoRR abs/1901.08203 (2019), http://arxiv.org/abs/1901.08203

  16. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: PRISM-games: A model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A. (eds.) Proc. 19th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2013). Lecture Notes in Computer Science, vol. 7795, pp. 185–191. Springer (2013), https://doi.org/10.1007/978-3-642-36742-7_13

  17. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based data. ACM Trans. Softw. Eng. Methodol. 7(3), 215–249 (1998). https://doi.org/10.1145/287000.287001

    Article  Google Scholar 

  18. David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sørensen, M.G., Taankvist, J.H.: On time with minimal expected cost! In: Cassez, F., Raskin, J. (eds.) Proc. 12th International Symposium pn Automated Technology for Verification and Analysis (ATVA 2014), Lecture Notes in Computer Science, vol. 8837, pp. 129–145. Springer (2014), https://doi.org/10.1007/978-3-319-11936-6_10

  19. David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist, J.H.: UPPAAL Stratego. In: Baier, C., Tinelli, C. (eds.) Proc. 21st International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2015). Lecture Notes in Computer Science, vol. 9035, pp. 206–211. Springer (2015), https://doi.org/10.1007/978-3-662-46681-0_16

  20. Esparza, J., Leucker, M., Schlund, M.: Learning workflow Petri nets. Fundam. Informaticae 113(3–4), 205–228 (2011). https://doi.org/10.3233/FI-2011-607

    Article  MathSciNet  Google Scholar 

  21. Fornell, C., Mithas, S., Morgeson, F.V., Krishnan, M.: Customer satisfaction and stock prices: high returns, low risk. J. Market. 70(1), 3–14 (2006). https://doi.org/10.1509/jmkg.70.1.003.qxd

    Article  Google Scholar 

  22. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967). https://doi.org/10.1016/S0019-9958(67)91165-5

    Article  MathSciNet  Google Scholar 

  23. Halvorsrud, R., Kvale, K., Følstad, A.: Improving service quality through customer journey analysis. J. Serv. Theory Pract. 26(6), 840–867 (2016). https://doi.org/10.1108/JSTP-05-2015-0111

    Article  Google Scholar 

  24. Halvorsrud, R., Mannhardt, F., Johnsen, E.B., Tapia Tarifa, S.L.: Smart journey mining for improved service quality. In: Carminati, B., Chang, C.K., Daminai, E., Deng, S., Tan, W., Wang, Z., Ward, R., Zhang, J. (eds.) Proc. International Conference on Services Computing (SCC 2021). pp. 367–369. IEEE (2021), https://doi.org/10.1109/SCC53864.2021.00051

  25. Hansen, C., Hansen, C., Alstrup, S., Simonsen, J.G., Lioma, C.: Modelling sequential music track skips using a Multi-RNN approach. CoRR abs/1903.08408 (2019), http://arxiv.org/abs/1903.08408

  26. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301), 13–30 (1963), https://doi.org/10.2307/2282952

  27. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) Proc. 9th International Symposium on Formal Methods for Components and Objects FMCO 2010. Lecture Notes in Computer Science, vol. 6957, pp. 142–164. Springer (2010), https://doi.org/10.1007/978-3-642-25271-6_8

  28. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architectures and resource consumption in timed object-oriented models. J. Log. Algeb. Methods Progr. 84(1), 67–91 (2015). https://doi.org/10.1016/J.JLAMP.2014.07.001

    Article  Google Scholar 

  29. Kobialka, P., Mannhardt, F., Tapia Tarifa, S.L., Johnsen, E.B.: Building user journey games from multi-party event logs. In: Proc. 3rd Intl. Workshop on Event Data and Behavioral Analytics (EdbA 2022). LNBIP, vol. 468. Springer (2022), https://doi.org/10.1007/978-3-031-27815-0_6

  30. Kobialka, P., Pferscher, A., Bergersen, G.R., Johnsen, E.B., Tapia Tarifa, S.L.: Stochastic games for user journeys. In: Platzer, A., Pradella, M., Rossi, M., Rozier, K.Y. (eds.) Proc. 26th International Symposium on Formal Methods (FM 2024). Lecture Notes in Computer Science, Springer (2024), to appear

    Google Scholar 

  31. Kobialka, P., Schlatte, R., Bergersen, G.R., Johnsen, E.B., Tapia Tarifa, S.L.: Simulating user journeys with active objects. In: de Boer, F.S., Damiani, F., Hähnle, R., Johnsen, E.B., Kamburjan, E. (eds.) Active Object Languages: Current Research Trends, Lecture Notes in Computer Science, vol. 14360, pp. 199–225. Springer (2024), https://doi.org/10.1007/978-3-031-51060-1_8

  32. Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: Weighted games for user journeys. In: Proc. 20th International Conference Software Engineering and Formal Methods (SEFM 2022). Lecture Notes in Computer Science, vol. 13550, pp. 253–270. Springer (2022), https://doi.org/10.1007/978-3-031-17108-6_16

  33. Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: User journey games: automating user-centric analysis. Softw. Syst. Model. 23(3), 605–624 (2024). https://doi.org/10.1007/s10270-024-01148-2

    Article  Google Scholar 

  34. Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P., Romijn, J.: As cheap as possible: Efficient cost-optimal reachability for priced timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) Proc. 13th International Conference on Computer Aided Verification (CAV 2001). Lecture Notes in Computer Science, vol. 2102, pp. 493–505. Springer (2001), https://doi.org/10.1007/3-540-44585-4_47

  35. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transf. 1(1–2), 134–152 (1997). https://doi.org/10.1007/S100090050010

    Article  Google Scholar 

  36. Meggetto, F., Revie, C., Levine, J., Moshfeghi, Y.: On skipping behaviour types in music streaming sessions. In: Demartini, G., Zuccon, G., Culpepper, J.S., Huang, Z., Tong, H. (eds.) Proc. 30th ACM International Conference on Information and Knowledge Management (CIKM’21). pp. 3333–3337. ACM (2021), https://doi.org/10.1145/3459637.3482123

  37. Meggetto, F., Revie, C., Levine, J., Moshfeghi, Y.: Why people skip music? On predicting music skips using deep reinforcement learning. In: Gwizdka, J., Rieh, S.Y. (eds.) Proc. Conference on Human Information Interaction and Retrieval (CHIIR 2023). pp. 95–106. ACM (2023), https://doi.org/10.1145/3576840.3578312

  38. Muškardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: an active automata learning library. Innov. Syst. Softw. Eng. 18(3), 417–426 (2022). https://doi.org/10.1007/S11334-022-00449-3

    Article  Google Scholar 

  39. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed automata. Formal Methods Syst. Des. 43(2), 164–190 (2013). https://doi.org/10.1007/S10703-012-0177-X

    Article  Google Scholar 

  40. Norris, J.R.: Markov chains. Cambridge series in statistical and probabilistic mathematics, Cambridge University Press (1998)

    Google Scholar 

  41. Ricci, F., Rokach, L., Shapira, B. (eds.): Recommender Systems Handbook. Springer (2015), https://doi.org/10.1007/978-1-4899-7637-6

  42. Rosenbaum, M.S., Otalora, M.L., Ramírez, G.C.: How to create a realistic customer journey map. Busi. Horiz. 60(1), 143–150 (2017). https://doi.org/10.1016/j.bushor.2016.09.010

    Article  Google Scholar 

  43. Schedl, M., Knees, P., McFee, B., Bogdanov, D.: Music recommendation systems: Techniques, use cases, and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 927–971. Springer (2022), https://doi.org/10.1007/978-1-0716-2197-4_24

  44. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn - learning timed automata from tests. In: André, É., Stoelinga, M. (eds.) Proc. 17th International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS 2019). Lecture Notes in Computer Science, vol. 11750, pp. 216–235. Springer (2019), https://doi.org/10.1007/978-3-030-29662-9_13

  45. Thaler, R.H., Sunstein, C.R.: Nudge: Improving decisions about health, wealth, and happiness. Penguin (2009)

    Google Scholar 

  46. Vandermerwe, S., Rada, J.: Servitization of business: Adding value by adding services. Europ. Manag. J. 6(4), 314–324 (1988). https://doi.org/10.1016/0263-2373(88)90033-3

    Article  Google Scholar 

  47. Watkins, C.J.C.H., Dayan, P.: Technical note Q-learning. Mach. Learn. 8, 279–292 (1992). https://doi.org/10.1007/BF00992698

    Article  Google Scholar 

  48. Zhang, B., Kreitz, G., Isaksson, M., Ubillos, J., Urdaneta, G., Pouwelse, J.A., Epema, D.H.J.: Understanding user behavior in Spotify. In: Proc. INFOCOM 2013. pp. 220–224. IEEE (2013), https://doi.org/10.1109/INFCOM.2013.6566767

  49. Zhu, L., Chen, Y.: Session-based sequential skip prediction via recurrent neural networks. CoRR abs/1902.04743 (2019), http://arxiv.org/abs/1902.04743

Download references

Acknowledgments

We thank the providers of user profiles, and Florian Lorber for his help with designing the Uppaal model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einar Broch Johnsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnsen, E.B., Kobialka, P., Pferscher, A., Tapia Tarifa, S.L. (2025). Nudging Strategies for User Journeys: Take a Path on the Wild Side. In: Graf, S., Pettersson, P., Steffen, B. (eds) Real Time and Such. Lecture Notes in Computer Science, vol 15230. Springer, Cham. https://doi.org/10.1007/978-3-031-73751-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73751-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73750-3

  • Online ISBN: 978-3-031-73751-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics