Abstract
With the emergence of service orientation as a major business driver, companies crucially depend on understanding the flow of their services from the user’s perspective. Models of these user journeys help to create a common understanding, but in practice their availability is limited. Process mining addresses the challenge of creating models that enable processes to be analyzed. Our goal is to mine user journey models. In this paper, we use automata learning algorithms to create behavioral models of stochastic user behavior from a given data set. The initially learned automaton is annotated with time and cost variables to capture aspects of the user experience. In a game scenario, we can model check properties of these enriched automata regarding the user behavior. Using Uppaal, we can synthesize strategies for nudging users into a different behavior. The approach is illustrated in a case study with a large dataset describing user behavior for a well-known music streaming application. Can we synthesize a strategy that nudges a computer science professor to take a path on the wild side of the usual listening habits?
This work is part of the Smart Journey Mining project, funded by the Research Council of Norway (Grant No. 312198).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
The particular individual is not an author of this paper.
- 4.
- 5.
- 6.
References
van der Aalst, W.M.P.: Process Mining-Data Science in Action. Springer, 2 edn. (2016), https://doi.org/10.1007/978-3-662-49851-4
Agostinelli, S., Chiariello, F., Maggi, F.M., Marrella, A., Patrizi, F.: Process mining meets model learning: discovering deterministic finite state automata from event logs for business process analysis. Inf. Syst. 114, 102180 (2023). https://doi.org/10.1016/j.is.2023.102180
Aichernig, B.K., et al.: Learning and statistical model checking of system response times. Softw. Qual. J. 27(2), 757–795 (2019). https://doi.org/10.1007/s11219-018-9432-8
Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: learning timed automata efficiently. In: Lee, R., Jha, S., Mavridou, A. (eds.) Proc. 12th International NASA Formal Methods Symposium (NFM 2020). Lecture Notes in Computer Science, vol. 12229, pp. 1–19. Springer (2020), https://doi.org/10.1007/978-3-030-55754-6_1
Aichernig, B.K., Schumi, R.: How fast is MQTT? - Statistical model checking and testing of IoT protocols. In: McIver, A., Horváth, A. (eds.) Proc. 15th International Conference on Quantitative Evaluation of Systems (QEST 2018). Lecture Notes in Computer Science, vol. 11024, pp. 36–52. Springer (2018), https://doi.org/10.1007/978-3-319-99154-2_3
Anderson, A., Maystre, L., Anderson, I., Mehrotra, R., Lalmas, M.: Algorithmic effects on the diversity of consumption on Spotify. In: Huang, Y., King, I., Liu, T., van Steen, M. (eds.) Proc. The Web Conference 2020 (WWW’20). pp. 2155–2165. ACM / IW3C2 (2020), https://doi.org/10.1145/3366423.3380281
Angluin, D.: Identifying languages from stochastic examples. Tech. rep., Yale University (1988), https://cpsc.yale.edu/sites/default/files/files/tr614.pdf
Behrmann, G., et al.: UPPAAL-Tiga: time for playing games! In: Damm, W., Hermanns, H. (eds.) Proc. 19th International Conference on Computer Aided Verification (CAV 2007). Lecture Notes in Computer Science, vol. 4590, pp. 121–125. Springer (2007), https://doi.org/10.1007/978-3-540-73368-3_14
Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced timed automata: algorithms and applications. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) Proc. Third International Symposium, on Formal Methods for Components and Objects (FMCO 2004). Lecture Notes in Computer Science, vol. 3657, pp. 162–182. Springer (2005), https://doi.org/10.1007/11561163_8
Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-defined schedulers for real-time concurrent objects. Innov. Syst. Softw. Eng. 9(1), 29–43 (2013). https://doi.org/10.1007/S11334-012-0184-5
Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Quantitative analysis of real-time systems using priced timed automata. Commun. ACM 54(9), 78–87 (2011). https://doi.org/10.1145/1995376.1995396
Brost, B., Mehrotra, R., Jehan, T.: The music streaming sessions dataset. In: Liu, L., White, R.W., Mantrach, A., Silvestri, F., McAuley, J.J., Baeza-Yates, R., Zia, L. (eds.) Proc. World Wide Web Conference (WWW 2019). pp. 2594–2600. ACM (2019), https://doi.org/10.1145/3308558.3313641
Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a state merging method. In: Carrasco, R.C., Oncina, J. (eds.) Proc. 2nd International Colloquium Grammatical Inference and Applications (ICGI-94). Lecture Notes in Computer Science, vol. 862, pp. 139–152. Springer (1994), https://doi.org/10.1007/3-540-58473-0_144
Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) Proc. 16th International Conference on Concurrency Theory (CONCUR 2005), Lecture Notes in Computer Science, vol. 3653, pp. 66–80. Springer (2005), https://doi.org/10.1007/11539452_9
Chang, S., Lee, S., Lee, K.: Sequential skip prediction with few-shot in streamed music contents. CoRR abs/1901.08203 (2019), http://arxiv.org/abs/1901.08203
Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: PRISM-games: A model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A. (eds.) Proc. 19th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2013). Lecture Notes in Computer Science, vol. 7795, pp. 185–191. Springer (2013), https://doi.org/10.1007/978-3-642-36742-7_13
Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based data. ACM Trans. Softw. Eng. Methodol. 7(3), 215–249 (1998). https://doi.org/10.1145/287000.287001
David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sørensen, M.G., Taankvist, J.H.: On time with minimal expected cost! In: Cassez, F., Raskin, J. (eds.) Proc. 12th International Symposium pn Automated Technology for Verification and Analysis (ATVA 2014), Lecture Notes in Computer Science, vol. 8837, pp. 129–145. Springer (2014), https://doi.org/10.1007/978-3-319-11936-6_10
David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist, J.H.: UPPAAL Stratego. In: Baier, C., Tinelli, C. (eds.) Proc. 21st International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2015). Lecture Notes in Computer Science, vol. 9035, pp. 206–211. Springer (2015), https://doi.org/10.1007/978-3-662-46681-0_16
Esparza, J., Leucker, M., Schlund, M.: Learning workflow Petri nets. Fundam. Informaticae 113(3–4), 205–228 (2011). https://doi.org/10.3233/FI-2011-607
Fornell, C., Mithas, S., Morgeson, F.V., Krishnan, M.: Customer satisfaction and stock prices: high returns, low risk. J. Market. 70(1), 3–14 (2006). https://doi.org/10.1509/jmkg.70.1.003.qxd
Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967). https://doi.org/10.1016/S0019-9958(67)91165-5
Halvorsrud, R., Kvale, K., Følstad, A.: Improving service quality through customer journey analysis. J. Serv. Theory Pract. 26(6), 840–867 (2016). https://doi.org/10.1108/JSTP-05-2015-0111
Halvorsrud, R., Mannhardt, F., Johnsen, E.B., Tapia Tarifa, S.L.: Smart journey mining for improved service quality. In: Carminati, B., Chang, C.K., Daminai, E., Deng, S., Tan, W., Wang, Z., Ward, R., Zhang, J. (eds.) Proc. International Conference on Services Computing (SCC 2021). pp. 367–369. IEEE (2021), https://doi.org/10.1109/SCC53864.2021.00051
Hansen, C., Hansen, C., Alstrup, S., Simonsen, J.G., Lioma, C.: Modelling sequential music track skips using a Multi-RNN approach. CoRR abs/1903.08408 (2019), http://arxiv.org/abs/1903.08408
Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301), 13–30 (1963), https://doi.org/10.2307/2282952
Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) Proc. 9th International Symposium on Formal Methods for Components and Objects FMCO 2010. Lecture Notes in Computer Science, vol. 6957, pp. 142–164. Springer (2010), https://doi.org/10.1007/978-3-642-25271-6_8
Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architectures and resource consumption in timed object-oriented models. J. Log. Algeb. Methods Progr. 84(1), 67–91 (2015). https://doi.org/10.1016/J.JLAMP.2014.07.001
Kobialka, P., Mannhardt, F., Tapia Tarifa, S.L., Johnsen, E.B.: Building user journey games from multi-party event logs. In: Proc. 3rd Intl. Workshop on Event Data and Behavioral Analytics (EdbA 2022). LNBIP, vol. 468. Springer (2022), https://doi.org/10.1007/978-3-031-27815-0_6
Kobialka, P., Pferscher, A., Bergersen, G.R., Johnsen, E.B., Tapia Tarifa, S.L.: Stochastic games for user journeys. In: Platzer, A., Pradella, M., Rossi, M., Rozier, K.Y. (eds.) Proc. 26th International Symposium on Formal Methods (FM 2024). Lecture Notes in Computer Science, Springer (2024), to appear
Kobialka, P., Schlatte, R., Bergersen, G.R., Johnsen, E.B., Tapia Tarifa, S.L.: Simulating user journeys with active objects. In: de Boer, F.S., Damiani, F., Hähnle, R., Johnsen, E.B., Kamburjan, E. (eds.) Active Object Languages: Current Research Trends, Lecture Notes in Computer Science, vol. 14360, pp. 199–225. Springer (2024), https://doi.org/10.1007/978-3-031-51060-1_8
Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: Weighted games for user journeys. In: Proc. 20th International Conference Software Engineering and Formal Methods (SEFM 2022). Lecture Notes in Computer Science, vol. 13550, pp. 253–270. Springer (2022), https://doi.org/10.1007/978-3-031-17108-6_16
Kobialka, P., Tapia Tarifa, S.L., Bergersen, G.R., Johnsen, E.B.: User journey games: automating user-centric analysis. Softw. Syst. Model. 23(3), 605–624 (2024). https://doi.org/10.1007/s10270-024-01148-2
Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P., Romijn, J.: As cheap as possible: Efficient cost-optimal reachability for priced timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) Proc. 13th International Conference on Computer Aided Verification (CAV 2001). Lecture Notes in Computer Science, vol. 2102, pp. 493–505. Springer (2001), https://doi.org/10.1007/3-540-44585-4_47
Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transf. 1(1–2), 134–152 (1997). https://doi.org/10.1007/S100090050010
Meggetto, F., Revie, C., Levine, J., Moshfeghi, Y.: On skipping behaviour types in music streaming sessions. In: Demartini, G., Zuccon, G., Culpepper, J.S., Huang, Z., Tong, H. (eds.) Proc. 30th ACM International Conference on Information and Knowledge Management (CIKM’21). pp. 3333–3337. ACM (2021), https://doi.org/10.1145/3459637.3482123
Meggetto, F., Revie, C., Levine, J., Moshfeghi, Y.: Why people skip music? On predicting music skips using deep reinforcement learning. In: Gwizdka, J., Rieh, S.Y. (eds.) Proc. Conference on Human Information Interaction and Retrieval (CHIIR 2023). pp. 95–106. ACM (2023), https://doi.org/10.1145/3576840.3578312
Muškardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: an active automata learning library. Innov. Syst. Softw. Eng. 18(3), 417–426 (2022). https://doi.org/10.1007/S11334-022-00449-3
Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed automata. Formal Methods Syst. Des. 43(2), 164–190 (2013). https://doi.org/10.1007/S10703-012-0177-X
Norris, J.R.: Markov chains. Cambridge series in statistical and probabilistic mathematics, Cambridge University Press (1998)
Ricci, F., Rokach, L., Shapira, B. (eds.): Recommender Systems Handbook. Springer (2015), https://doi.org/10.1007/978-1-4899-7637-6
Rosenbaum, M.S., Otalora, M.L., Ramírez, G.C.: How to create a realistic customer journey map. Busi. Horiz. 60(1), 143–150 (2017). https://doi.org/10.1016/j.bushor.2016.09.010
Schedl, M., Knees, P., McFee, B., Bogdanov, D.: Music recommendation systems: Techniques, use cases, and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 927–971. Springer (2022), https://doi.org/10.1007/978-1-0716-2197-4_24
Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn - learning timed automata from tests. In: André, É., Stoelinga, M. (eds.) Proc. 17th International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS 2019). Lecture Notes in Computer Science, vol. 11750, pp. 216–235. Springer (2019), https://doi.org/10.1007/978-3-030-29662-9_13
Thaler, R.H., Sunstein, C.R.: Nudge: Improving decisions about health, wealth, and happiness. Penguin (2009)
Vandermerwe, S., Rada, J.: Servitization of business: Adding value by adding services. Europ. Manag. J. 6(4), 314–324 (1988). https://doi.org/10.1016/0263-2373(88)90033-3
Watkins, C.J.C.H., Dayan, P.: Technical note Q-learning. Mach. Learn. 8, 279–292 (1992). https://doi.org/10.1007/BF00992698
Zhang, B., Kreitz, G., Isaksson, M., Ubillos, J., Urdaneta, G., Pouwelse, J.A., Epema, D.H.J.: Understanding user behavior in Spotify. In: Proc. INFOCOM 2013. pp. 220–224. IEEE (2013), https://doi.org/10.1109/INFCOM.2013.6566767
Zhu, L., Chen, Y.: Session-based sequential skip prediction via recurrent neural networks. CoRR abs/1902.04743 (2019), http://arxiv.org/abs/1902.04743
Acknowledgments
We thank the providers of user profiles, and Florian Lorber for his help with designing the Uppaal model.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Johnsen, E.B., Kobialka, P., Pferscher, A., Tapia Tarifa, S.L. (2025). Nudging Strategies for User Journeys: Take a Path on the Wild Side. In: Graf, S., Pettersson, P., Steffen, B. (eds) Real Time and Such. Lecture Notes in Computer Science, vol 15230. Springer, Cham. https://doi.org/10.1007/978-3-031-73751-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-73751-0_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73750-3
Online ISBN: 978-3-031-73751-0
eBook Packages: Computer ScienceComputer Science (R0)