Skip to main content

Abstract

The current global population growth has intensified the demand for feed, especially dairy and meat products. In response to this growing need, precision livestock farming has become essential to manage animals efficiently and sustainably. Within this new approach, individual monitoring of each animal is essential. To this end, activity monitoring collars have been postulated as one of the most valuable tools for this purpose. With this in mind, three dimensional reduction methods (ICA, Isomap and t-SNE) have been analyzed in this study to identify patterns in the daily behavior of dairy cows through data collected by these collars. T-SNE was found to be especially effective in distinguishing individual or small group behaviors of animals, which is crucial for improving herd management and early detection of health or behavioral problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Innogando. (2023). https://innogando.com/. Accessed 19 Dec 2023

  2. Berckmans, D.: General introduction to precision livestock farming. Anim. Front. 7(1), 6–11 (2017)

    Article  Google Scholar 

  3. Chaudhry, A.A., Mumtaz, R., Zaidi, S.M.H., Tahir, M.A., School, S.H.M.: Internet of Things (IoT) and machine learning (ML) enabled livestock monitoring. In: 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), pp. 151–155. IEEE (2020)

    Google Scholar 

  4. Fukase, E., Martin, W.: Economic growth, convergence, and world food demand and supply. World Dev. 132, 104954 (2020)

    Article  Google Scholar 

  5. Garcia, R., Aguilar, J., Toro, M., Pinto, A., Rodriguez, P.: A systematic literature review on the use of machine learning in precision livestock farming. Comput. Electron. Agric. 179, 105826 (2020)

    Article  Google Scholar 

  6. Geng, X., Zhan, D.C., Zhou, Z.H.: Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Trans. Syst. Man Cybernet. Part B (Cybernetics) 35(6), 1098–1107 (2005)

    Google Scholar 

  7. Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M.: Multidimensional scaling, Sammon mapping, and Isomap: tutorial and survey. arXiv preprint arXiv:2009.08136 (2020)

  8. Halachmi, I., Guarino, M., Bewley, J., Pastell, M.: Smart animal agriculture: application of real-time sensors to improve animal well-being and production. Annu. Rev. Animal Biosci. 7, 403–425 (2019)

    Article  Google Scholar 

  9. Handcock, R.N., et al.: Monitoring animal behaviour and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing. Sensors 9(05), 3586–3603 (2009)

    Google Scholar 

  10. Ji, S., Zhang, Z., Ying, S., Wang, L., Zhao, X., Gao, Y.: Kullback-Leibler divergence metric learning. IEEE Trans. Cybernet. 52(4), 2047–2058 (2020)

    Article  Google Scholar 

  11. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  12. Michelena, Á., et al.: Beta Hebbian learning for intrusion detection in networks with MQTT protocols for IoT devices. Logic J. IGPL 32(2), 352–365 (2024)

    Google Scholar 

  13. Neethirajan, S.: The role of sensors, big data and machine learning in modern animal farming. Sens. Bio-Sens. Res. 29, 100367 (2020). https://doi.org/10.1016/j.sbsr.2020.100367

  14. Riaboff, L., Shalloo, L., Smeaton, A.F., Couvreur, S., Madouasse, A., Keane, M.T.: Predicting livestock behaviour using accelerometers: a systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data. Comput. Electron. Agric. 192, 106610 (2022)

    Article  Google Scholar 

  15. Stone, J.V.: Independent component analysis: a tutorial introduction (2004)

    Google Scholar 

  16. Stygar, A.H., et al.: A systematic review on commercially available and validated sensor technologies for welfare assessment of dairy cattle. Front. Veterin. Sci. 8, 634338 (2021)

    Google Scholar 

  17. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Google Scholar 

  18. Tharwat, A.: Independent component analysis: an introduction. Appl. Comput. Inform. 17(2), 222–249 (2021)

    Article  Google Scholar 

  19. Thornton, P.K.: Livestock production: recent trends, future prospects. Philos. Trans. Roy. Soc. B: Biol. Sci. 365(1554), 2853–2867 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Álvaro Michelena’s research was supported by the Spanish Ministry of Universities (https://www.universidades.gob.es/), under the “Formación de Profesorado Universitario” grant with reference: FPU21/00932.

CITIC, as a center accredited for excellence within the Galician University System and a member of the CIGUS Network, receives subsidies from the Department of Education, Science, Universities, and Vocational Training of the Xunta de Galicia. Additionally, it is co-financed by the EU through the FEDER Galicia 2021-27 operational program (Ref. ED431G 2023/01).

 This work has been supported by Centro Mixto de Investigación UDC-NAVANTIA (IN853C 2022/01), funded by GAIN (Xunta de Galicia) and ERDF Galicia 2021-2027.

Antonio Díaz-Longueira’s research was supported by the Xunta de Galicia (Regional Government of Galicia) through grants to Ph.D. (http://gain.xunta.gal), under the “Axudas á etapa predoutoral” grant with reference: ED481A-2023-072.

Xunta de Galicia. Grants for the consolidation and structuring of competitive research units, GPC (ED431B 2023/49).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Michelena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Michelena, Á., Díaz-Longueira, A., Arcano-Bea, P., Quintián, H., Fontenla-Romero, Ó., Calvo-Rolle, J.L. (2024). Dimensional Reduction Techniques for the Characterization of Behavioral Patterns in Dairy Cows. In: Zayas-Gato, F., Díaz-Longueira, A., Casteleiro-Roca, JL., Jove, E. (eds) Distributed Computing and Artificial Intelligence, Special Sessions III - Intelligent Systems Applications, 21st International Conference. DCAI 2024. Lecture Notes in Networks and Systems, vol 1173. Springer, Cham. https://doi.org/10.1007/978-3-031-73910-1_4

Download citation

Publish with us

Policies and ethics