Skip to main content

Abstract

Adaptive optics (AO) compile a variety of techniques that produce high-quality images in ground-based telescopes. Most commonly used AO techniques require the use of laser guide stars, which introduce errors due to the limited width and low altitude of these artificial stars, resulting in issues such as anisoplanatism and cone-effect problems. This study proposes an alternative AO system that aims to eliminate these issues. In contrast with similar techniques such as the Projected Pupil Plane Pattern (PPPP), that uses two pictures, Wavefronts Obtained from Measurements from Beam-profiles through Atmospheric Turbulence (WOMBAT) requires only one picture, reducing the complexity of the system. Even with only one image, WOMBAT manages to achieve similar results to PPPP in wavefront correction, offering potential advancements in ground-based telescope imaging quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bharmal, N.A., Myers, R.M., Yang, H.: PPPP: an on-sky experiment for zero-cone effect LGS alternative. In: Close, L.M., Schreiber, L., Schmidt, D. (eds.) Adaptive Optics Systems VI. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10703, p. 1070362, July 2018. https://doi.org/10.1117/12.2313166

  2. Buscher, D.F., Love, G.D., Myers, R.M.: Laser beacon wave-front sensing without focal anisoplanatism. Opt. Lett. 27(3), 149–151 (2002). https://doi.org/10.1364/OL.27.000149

    Article  Google Scholar 

  3. Casas, J.M., et al.: Multi-frequency point source detection with fully convolutional networks: performance in realistic microwave sky simulations. Astron. Astrophys. 658, A110 (2022). https://doi.org/10.1051/0004-6361/202141874

  4. Chan, S.H., Chimitt, N.: Computational imaging through atmospheric turbulence. Found. Trends\(\text{\textregistered} \) Comput. Graph. Vis. 15(4), 253–508 (2023). https://doi.org/10.1561/0600000103

  5. Davies, R., Kasper, M.: Adaptive optics for astronomy. Annu. Rev. Astron. Astrophys. 50, 305–351 (2012). https://doi.org/10.1146/annurev-astro-081811-125447

  6. Hippler, S., et al.: Single conjugate adaptive optics for the ELT instrument METIS. Exp. Astron. 47, 65–105 (2019). https://doi.org/10.1007/s10686-018-9609-y

  7. Iglesias Álvarez, S., et al.: One-dimensional convolutional neural networks for detecting transiting exoplanets. Axioms 12(4), 348 (2023). https://doi.org/10.3390/axioms12040348

  8. Lakshminarayanan, V., Fleck, A.: Zernike polynomials: a guide. J. Mod. Opt. 58, 1678–1678 (2011). https://doi.org/10.1080/09500340.2011.633763

  9. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

  10. Pérez, S., et al.: Enhancing open-loop wavefront prediction in adaptive optics through 2D-LSTM neural network implementation. Photonics 11(3), 240 (2024). https://doi.org/10.3390/photonics11030240

  11. Roddier, F.: Adaptive Optics in Astronomy. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  12. Tatulli, E., Ramaprakash, A.N.: Laser tomography adaptive optics: a performance study. J. Opt. Soc. Am. A 30(12), 2482 (2013). https://doi.org/10.1364/JOSAA.30.002482

    Article  Google Scholar 

  13. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, pp. 242–264. IGI global (2010)

    Google Scholar 

  14. Tyson, R.K.: Principles of Adaptive Optics, p. 141056. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  15. Yang, H., Bharmal, N., Myers, R., Younger, E.: Laboratory demonstration of an alternative laser guide stars wavefront sensing technique—projected pupil plane pattern. J. Astron. Telescopes Instrum. Syst. 5, 029002 (2019). https://doi.org/10.1117/1.JATIS.5.2.029002

  16. Yang, H., Gonzalez Gutierrez, C., Bharmal, N.A., de Cos Juez, F.J.: Projected Pupil Plane Pattern (PPPP) with artificial neural networks. Mon. Not. RAS 487(1), 1480–1487 (2019). https://doi.org/10.1093/mnras/stz1362

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Buendía-Roca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buendía-Roca, A. et al. (2024). Reconstructing Turbulence-Distorted Wavefronts Through Laser-Beam Profiles. In: Zayas-Gato, F., Díaz-Longueira, A., Casteleiro-Roca, JL., Jove, E. (eds) Distributed Computing and Artificial Intelligence, Special Sessions III - Intelligent Systems Applications, 21st International Conference. DCAI 2024. Lecture Notes in Networks and Systems, vol 1173. Springer, Cham. https://doi.org/10.1007/978-3-031-73910-1_9

Download citation

Publish with us

Policies and ethics