Skip to main content

Deep Learning-Based Liver Vessel Separation with Plug-and-Play Modules: Skeleton Tracking and Graph Attention

  • Conference paper
  • First Online:
Topology- and Graph-Informed Imaging Informatics (TGI3 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15239))

  • 121 Accesses

Abstract

Accurate segmentation of liver vessels is crucial for medical applications due to its pivotal role in diagnosing liver diseases, planning surgical interventions, and assessing treatment effectiveness. In this paper, we present a new dataset for liver vessel separation and propose two novel plug-and-play modules integrated into deep learning frameworks for liver vessel segmentation. The first module, termed as the skeleton tracking module, addresses the issue of segmentation fragmentation by effectively tracking the vessel skeletons. The second module, the graph attention module, is introduced for vessel separation. We demonstrate the effectiveness of our proposed approach through comprehensive experiments, showcasing significant improvements in segmentation accuracy. The dataset is publicly available, fostering research and development. https://github.com/oneway-phil/SKTS-GAT/tree/main.

First authors (C. Pei and W. Wang are with the same degree of contribution, they are the co-first authors).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonelli, M., et al.: The medical segmentation decathlon. Nat. Commun. 13(1), 4128 (2022)

    Article  Google Scholar 

  2. Aoki, T., Kubota, K.: Preoperative portal vein embolization for hepatocellular carcinoma: consensus and controversy. World J. Hepatol. 8(9), 439 (2016)

    Article  Google Scholar 

  3. Cai, S., Tian, Y., Lui, H., Zeng, H., Wu, Y., Chen, G.: Dense-UNet: a novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network. Quant. Imaging Med. Surg. 10(6), 1275 (2020)

    Article  Google Scholar 

  4. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5356–5364 (2019)

    Google Scholar 

  5. Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)

    Article  Google Scholar 

  6. Huang, H., et al.: UNet 3+: A full-scale connected UNet for medical image segmentation. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055–1059. IEEE (2020)

    Google Scholar 

  7. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  8. Kavur, A.E., et al.: Chaos challenge-combined (CT-MR) healthy abdominal organ segmentation. Med. Image Anal. 69, 101950 (2021)

    Article  Google Scholar 

  9. Nardelli, P., et al.: Pulmonary artery-vein classification in CT images using deep learning. IEEE Trans. Med. Imaging 37(11), 2428–2440 (2018)

    Article  Google Scholar 

  10. Rahman, M.M., Marculescu, R.: G-CASCADE: efficient cascaded graph convolutional decoding for 2D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 7728–7737 (2024)

    Google Scholar 

  11. Selle, D., Preim, B., Schenk, A., Peitgen, H.O.: Analysis of vasculature for liver surgical planning. IEEE Trans. Med. Imaging 21(11), 1344–1357 (2002)

    Article  Google Scholar 

  12. Soler, L., et al.: 3D image reconstruction for comparison of algorithm database 3 (2010). https://www.ircad.fr/research/datasets/liver-segmentation-3d-ircadb-01

  13. Wang, W., et al.: AVDNet: joint coronary artery and vein segmentation with topological consistency. Med. Image Anal. 91, 102999 (2024)

    Article  Google Scholar 

  14. Wetzel, S.G., Kirsch, E., Stock, K.W., Kolbe, M., Kaim, A., Radue, E.W.: Cerebral veins: comparative study of CT venography with intraarterial digital subtraction angiography. Am. J. Neuroradiol. 20(2), 249–255 (1999)

    Google Scholar 

  15. Xie, K., Yang, J., Wei, D., Weng, Z., Fua, P.: Efficient anatomical labeling of pulmonary tree structures via implicit point-graph networks. arXiv preprint arXiv:2309.17329 (2023)

  16. Xu, S., Duan, L., Zhang, Y., Zhang, Z., Sun, T., Tian, L.: Graph-and transformer-guided boundary aware network for medical image segmentation. Comput. Methods Programs Biomed. 242, 107849 (2023)

    Article  Google Scholar 

  17. Yuan, Y., et al.: AFF-NET: an adaptive feature fusion network for liver vessel segmentation from CT images. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2023)

    Google Scholar 

  18. Zeng, Y.z., et al.: Automatic liver vessel segmentation using 3d region growing and hybrid active contour model. Comput. Biol. Med. 97, 63–73 (2018)

    Google Scholar 

  19. Zeng, Y.z., et al.: Liver vessel segmentation and identification based on oriented flux symmetry and graph cuts. Comput. Methods Programs Biomed. 150, 31–39 (2017)

    Google Scholar 

  20. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-Net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

  21. Zheng, H., et al.: Alleviating class-wise gradient imbalance for pulmonary airway segmentation. IEEE Trans. Med. Imaging 40(9), 2452–2462 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pei, C. et al. (2025). Deep Learning-Based Liver Vessel Separation with Plug-and-Play Modules: Skeleton Tracking and Graph Attention. In: Chen, C., Singh, Y., Hu, X. (eds) Topology- and Graph-Informed Imaging Informatics. TGI3 2024. Lecture Notes in Computer Science, vol 15239. Springer, Cham. https://doi.org/10.1007/978-3-031-73967-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73967-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73966-8

  • Online ISBN: 978-3-031-73967-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics