Skip to main content

Topological Analysis of Seizure-Induced Changes in Brain Hierarchy Through Effective Connectivity

  • Conference paper
  • First Online:
Topology- and Graph-Informed Imaging Informatics (TGI3 2024)

Abstract

Traditional Topological Data Analysis (TDA) methods, such as Persistent Homology (PH), rely on distance measures (e.g., cross-correlation, partial correlation, coherence, and partial coherence) that are symmetric by definition. While useful for studying topological patterns in functional brain connectivity, the main limitation of these methods is their inability to capture the directional dynamics - which are crucial for understanding effective brain connectivity. We propose the Causality-Based Topological Ranking (CBTR) method, which integrates Causal Inference (CI) to assess effective brain connectivity with Hodge Decomposition (HD) to rank brain regions based on their mutual influence. Our simulations confirm that the CBTR method accurately and consistently identifies hierarchical structures in multivariate time series data. Moreover, this method effectively identifies brain regions showing the most significant interaction changes with other regions during seizures using electroencephalogram (EEG) data. These results provide novel insights into the brain’s hierarchical organization and illuminate the impact of seizures on its dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P.: Persistence images: A stable vector representation of persistent homology. Journal of Machine Learning Research 18, 1–35 (2017). https://jmlr.org/papers/volume18/16-337/16-337.pdf

  2. Bendich, P., Marron, J.S., Miller, E., Pieloch, A., Skwerer, S.: Persistent homology analysis of brain artery trees. The Annals of Applied Statistics 10, 198–218 (2016). https://doi.org/10.1214/15-AOAS886

    Article  MathSciNet  Google Scholar 

  3. Bhatia, H., Norgard, G., Pascucci, V., Bremer, P.T.: The helmholtz-hodge decomposition-a survey. IEEE Trans. Visual Comput. Graphics 19(8), 1386–1404 (2013). https://doi.org/10.1109/TVCG.2012.316

    Article  Google Scholar 

  4. Bromfield, E.B., Cavazos, J.E., Sirven, J.I.: An Introduction to Epilepsy. American Epilepsy Society (2006)

    Google Scholar 

  5. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16, 77–102 (2015). https://doi.org/10.5555/2789272.2789275

    Article  MathSciNet  Google Scholar 

  6. Carlsson, G., Zomorodian, A., Collins, A., Guibas, L.: Persistence barcodes for shapes. p. 124-135. Association for Computing Machinery (2004). https://doi.org/10.1145/1057432.1057449

  7. Cook, C.J., et al.: Effective connectivity within the default mode network in left temporal lobe epilepsy: findings from the epilepsy connectome project. Brain Connectivity 9 (2019). https://doi.org/10.1089/brain.2018.0600

  8. Edelsbrunner, H., Harer, J.: Persistent homology-a survey. Discret. Comput. Geom. 453, 257–282 (2008). https://doi.org/10.1090/conm/453/08802

    Article  MathSciNet  Google Scholar 

  9. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification 28, 511–533 (2002). https://doi.org/10.1007/s00454-002-2885-2

  10. El-Yaagoubi, A.B., Jiao, S., Chung, M.K., Ombao, H.: Spectral topological data analysis of brain signals. arXiv:2401.05343 [q-bio.NC] (2024). https://doi.org/10.48550/arXiv.2401.05343

  11. El-Yaagoubi, A.B., Ombao, H.: Topological data analysis for directed dependence networks of multivariate time series data. In: Research Papers in Statistical Inference for Time Series and Related Models, chap. 17. Springer (2023)

    Google Scholar 

  12. Friston, K., Moran, R., Seth, A.: Analysing connectivity with granger causality and dynamic causal modelling. Curr. Opin. Neurobiol. 23(2), 172–178 (2013). https://doi.org/10.1016/j.conb.2012.11.010

    Article  Google Scholar 

  13. Friston, K.J.: Functional and effective connectivity: A review. Brain Connectivity 1, 13–36 (2011). https://doi.org/10.1089/brain.2011.0008

    Article  Google Scholar 

  14. Gidea, M., Katz, Y.: Topological data analysis of financial time series: Landscapes of crashes. Phys. A 491, 820–834 (2018). https://doi.org/10.1016/j.physa.2017.09.028

    Article  MathSciNet  Google Scholar 

  15. Jiang, X., Lim, L.H., Yao, Y., Ye, Y.: Statistical ranking and combinatorial hodge theory. Math. Program. 127(1), 203–244 (2011). https://doi.org/10.1007/s10107-010-0419-x

    Article  MathSciNet  Google Scholar 

  16. Jiang, Y., Chen, D., Chen, X., Li, T., Wei, G.W., Pan, F.: Topological representations of crystalline compounds for the machine-learning prediction of materials properties. npj Computational Materials 7(28) (2021). https://doi.org/10.1038/s41524-021-00493-w

  17. Lee, H., Kang, H., Chung, M.K., Kim, B.N., Lee, D.S.: Persistent brain network homology from the perspective of dendrogram. IEEE Trans. Med. Imaging 31, 2267–2277 (2012). https://doi.org/10.1109/TMI.2012.2219590

    Article  Google Scholar 

  18. Pearl, J.: Causality: Models. Cambridge University Press, Reasoning and Inference (2009)

    Book  Google Scholar 

  19. Rabadan, R., Blumberg, A.J.: Topological Data Analysis for Genomics and Evolution. Cambridge University Press (2019)

    Google Scholar 

  20. Roebroeck, A., Formisano, E., Goebel, R.: Mapping directed influence over the brain using granger causality and fmri. Neuroimage 25(1), 230–242 (2005). https://doi.org/10.1016/j.neuroimage.2004.11.017

    Article  Google Scholar 

  21. Runge, J.: Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. In: Peters, J., Sontag, D. (eds.) Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI). Proceedings of Machine Learning Research, vol. 124, pp. 1388–1397. PMLR (03–06 Aug 2020), https://proceedings.mlr.press/v124/runge20a.html

  22. Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., Sejdinovic, D.: Detecting and quantifying causal associations in large nonlinear time series datasets. Science Advances 5(11), eaau4996 (2019). https://doi.org/10.1126/sciadv.aau4996

  23. Seth, A.K., Barrett, A.B., Barnett, L.: Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 35(8), 3293–3297 (2015). https://doi.org/10.1523/JNEUROSCI.4399-14.2015

    Article  Google Scholar 

  24. Stevenson, N.J., Tapani, K., Lauronen, L., Vanhatalo, S.: A dataset of neonatal eeg recordings with seizure annotations. Scientific Data 6, 190039 (2019). https://doi.org/10.1038/sdata.2019.39

    Article  Google Scholar 

  25. Weichwald, S., Peters, J.: Causality in cognitive neuroscience: Concepts, challenges, and distributional robustness. J. Cogn. Neurosci. 33(2), 226–247 (2021). https://doi.org/10.1162/jocn_a_01623

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anass B. El-Yaagoubi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Yaagoubi, A.B., Chung, M.K., Ombao, H. (2025). Topological Analysis of Seizure-Induced Changes in Brain Hierarchy Through Effective Connectivity. In: Chen, C., Singh, Y., Hu, X. (eds) Topology- and Graph-Informed Imaging Informatics. TGI3 2024. Lecture Notes in Computer Science, vol 15239. Springer, Cham. https://doi.org/10.1007/978-3-031-73967-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73967-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73966-8

  • Online ISBN: 978-3-031-73967-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics