Skip to main content

Refining Uncertainty Management in Machine Learning: An Interval-Valued Fuzzy Set Approach to Logistic Regression

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2024)

Abstract

The article addresses the ubiquitous challenge of uncertainty in decision-making, with a particular focus on medical decision-making, through the innovative application of logistic regression enhanced by interval-valued fuzzy set theory. Traditional logistic regression relies on a linear combination of variables and a uniform set of regression coefficients, which can inaccurately represent the variability and uncertainty inherent in real-world data. Our proposed methodology differs in that it incorporates weights with interval values into the logistic regression model, allowing for a more nuanced and flexible representation of the data. This approach allows the model to adjust the weights independently in terms of values, offering a fit to interval data and improving the precision of predictions. By developing a specialized algorithm to calculate weighted coefficients adjusted to specific inputs or attributes, we demonstrate the practical effectiveness of our method in dealing with uncertainty. Experimental results highlight the potential of interval-valued fuzzy sets in improving machine learning techniques and enhancing the accuracy of decision-making models in complex, uncertain environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asiain, M.J., et al.: About the use of admissible order for defining implication operators. In: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS, vol. 610, pp. 353–362. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40596-4_30

  2. A Practical Guide to Averaging Functions. SFSC, vol. 329. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24753-3

  3. Bustince, H.: Indicator of inclusion grade for interval-valued fuzzy sets, application to approximate reasoning based on interval-valued fuzzy sets. Internat. J. Appr. Reas. 23, 137–209 (2000)

    Google Scholar 

  4. Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets Syst. 220, 69–77 (2013)

    Google Scholar 

  5. Bustince, H., Galar, M., Bedregal, B., Kolesárová, A., Mesiar, R.: A new approach to interval-valued choquet integrals and the problem of ordering in interval-valued fuzzy sets applications. IEEE Trans. Fuzzy Syst. 21(6), 1150–1162 (2013)

    Article  MATH  Google Scholar 

  6. Dua, D., Graff, C.: UCI machine learning repository (2017)

    Google Scholar 

  7. Dubois, D., Liu, W., Ma, J., Prade, H.: The basic principles of uncertain information fusion, an organised review of merging rules in different representation frameworks. Information Fusion 32, 12–39 (2016)

    Google Scholar 

  8. Dyczkowski, K., Pȩkala, B., Szkoa, J., Wilbik, A.: Federated learning with uncertainty on the example of a medical data. In: 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2002)

    Google Scholar 

  9. Dyczkowski, K., Wójtowicz, A., Żywica, P., Stachowiak, A., Moszyński, R., Szubert, S.: An intelligent system for computer-aided ovarian tumor diagnosis. In: Intelligent Systems 2014, pp. 335–343. Springer, Cham (2015)

    Google Scholar 

  10. Gorzałczany, M.B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 21(1), 1–17 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hosmer, D.W.: Applied Logistic Regression, 3nd edn. Wiley (2013)

    Google Scholar 

  12. Kologlu, M., Elker, D., Altun, H., Sayek, I.: Validation of MPI and PIA II in two different groups of patients with secondary peritonitis. Hepatogastroenterology 48, 141–151 (2001)

    Google Scholar 

  13. Komorníková, M., Mesiar, R.: Aggregation functions on bounded partially ordered sets and their classification. Fuzzy Sets Syst. 175(1), 48–56 (2011)

    Google Scholar 

  14. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

    Article  MATH  Google Scholar 

  15. Lynam, A.L., et al.: Logistic regression has similar performance to optimised machine learning algorithms in a clinical setting: application to the discrimination between type 1 and type 2 diabetes in young adults. Diagn. Prog. Res. 4, 6 (2020)

    Google Scholar 

  16. Moore, R.E.: Interval Analysis. Prentice Hall (1966)

    Google Scholar 

  17. Moore, R.E.: Methods and applications of interval analysis. In: SIAM (1979)

    Google Scholar 

  18. Niewgowski, K., Wilczek, N., Mado, B., Palmi, J., Wasyluk, M.: Applications of artificial intelligence (AI) in medicine. Med. Og. Nauk. Zdr. 27(3), 213–219 (2021)

    Article  Google Scholar 

  19. Nusinovici, S., et al.: Logistic regression was as good as machine learning for predicting major chronic diseases. J. Clin. Epidem. 122, 56–69 (2020)

    Google Scholar 

  20. Uncertainty Data in Interval-Valued Fuzzy Set Theory. SFSC, vol. 367. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93910-0

  21. Pękala, B., Bentkowska, U., Bustince, H., Fernandez, J., Galar, M.: Operators on intuitionistic fuzzy relations. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2015)

    Google Scholar 

  22. Piegat, A., Landowski, M.: Multidimensional approach to interval uncertainty calculations. In: Atanassov, K., et al. (eds.) New Trends in Fuzzy Sets, Intuitionistic: Fuzzy Sets, Generalized Nets and Related Topics, p. 137151. IBS PAN-SRI PAS, Warsaw (2013)

    Google Scholar 

  23. Sambuc, R.: Fonctions \(\phi \)-floues: application á l’aide au diagnostic en pathologie thyroidienne. Ph.D. thesis, Faculté de Médecine de Marseille (1975). (in French)

    Google Scholar 

  24. Türksen, I.B.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst. 20(2), 191–210 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2) (2019)

    Google Scholar 

  26. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  27. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zapata, H., et al.: Interval-valued implications and interval-valued strong equality index with admissible orders. Int. J. Appr. Reas. 88, 91–109 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Dyczkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szkoa, J., Pkala, B., Dyczkowski, K. (2025). Refining Uncertainty Management in Machine Learning: An Interval-Valued Fuzzy Set Approach to Logistic Regression. In: Lesot, MJ., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2024. Lecture Notes in Networks and Systems, vol 1176. Springer, Cham. https://doi.org/10.1007/978-3-031-73997-2_20

Download citation

Publish with us

Policies and ethics