Skip to main content

The Hybrid Method of Inference System Based on Experts’ Rules and Machine Learning with an Uncertainty Aspect

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2024)

Abstract

Rule-based approximate reasoning systems are an important decision-making tool in many application problems. The use of expert knowledge or machine learning techniques to create rules does not exhaust the problems of representing data and decision dependencies, therefore we propose a hybrid/mixed technique for creating a set of rules while effectively modeling uncertainty through interval-valued fuzzy representation in the problem of detecting falls of elderly people. The obtained prediction confirms the correctness of the choice of diagnostic methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UR Fall Detection Dataset (2016). http://fenix.ur.edu.pl/mkepski/ds/uf.html

  2. Asiain, M.J., et al.: About the use of admissible order for defining implication operators. In: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS, vol. 610, pp. 353–362. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40596-4_30

    Chapter  MATH  Google Scholar 

  3. Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions. Studies in Fuzziness and Soft Computing, vol. 329. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24753-3

  4. Bustince, H.: Indicator of inclusion grade for interval-valued fuzzy sets. Application to approximate reasoning based on interval-valued fuzzy sets. Internat. J. Appr. Reas. 23, 137–209 (2000)

    Google Scholar 

  5. Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets Syst. 220, 69–77 (2013). https://doi.org/10.1016/j.fss.2012.07.015. Theme: Aggregation functions

  6. Bustince, H., Galar, M., Bedregal, B., Kolesárová, A., Mesiar, R.: A new approach to interval-valued Choquet integrals and the problem of ordering in interval-valued fuzzy sets applications. IEEE Trans. Fuzzy Syst. 21(6), 1150–1162 (2013)

    Article  MATH  Google Scholar 

  7. Cintra, M., Monard, M.C., Camargo, H.: On rule learning methods: a comparative analysis of classic and fuzzy approaches. Stud. Fuzziness Soft Comput. 291, 89–104 (2013)

    Article  MATH  Google Scholar 

  8. Dixit, A., Jain, S.: Intuitionistic fuzzy time series forecasting method for non-stationary time series data with suitable number of clusters and different window size for fuzzy rule generation. Inf. Sci. 623, 132–145 (2023)

    Article  MATH  Google Scholar 

  9. Dubois, D., Liu, W., Ma, J., Prade, H.: The basic principles of uncertain information fusion. An organised review of merging rules in different representation frameworks. Inf. Fusion 32, 12–39 (2016)

    Google Scholar 

  10. Dyczkowski, K., Wójtowicz, A., Żywica, P., Stachowiak, A., Moszyński, R., Szubert, S.: An intelligent system for computer-aided ovarian tumor diagnosis. In: Filev, D., et al. (eds.) Intelligent Systems’2014. AISC, vol. 323, pp. 335–343. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11310-4_29

    Chapter  Google Scholar 

  11. Gao, F., Bi, W.: A fast belief rule base generation and reduction method for classification problems. Int. J. Approximate Reasoning 160, 108,964 (2023)

    Google Scholar 

  12. Gorzałczany, M.B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 21(1), 1–17 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, J.P., Gao, L., Li, X.Y., Zhang, C.J.: A novel priority dispatch rule generation method based on graph neural network and reinforcement learning for distributed job-shop scheduling. J. Manufacturing Syst. 69, 119–134 (2023)

    Article  MATH  Google Scholar 

  14. Kepski, M.: Fall detection and selected action recognition using image sequences. Ph.D. thesis, AGH University of Science and Technology, Kraków, Poland (2016)

    Google Scholar 

  15. Komorníková, M., Mesiar, R.: Aggregation functions on bounded partially ordered sets and their classification. Fuzzy Sets Syst. 175(1), 48–56 (2011). Theme: Aggregation Functions, Generalised Measure Theory

    Google Scholar 

  16. Mroczek, T., Gil, D., Pȩkala, B.: Fuzzy and rough approach to the problem of missing data in fall detection system. Fuzzy Sets Syst. 480, 108,868 (2024)

    Google Scholar 

  17. Pȩkala, B., Mroczek, T., Gil, D., Kepski, M.: Application of fuzzy and rough logic to posture recognition in fall detection system. Sensors 22(4) (2022). https://www.mdpi.com/1424-8220/22/4/1602

  18. Pękala, B.: Uncertainty Data in Interval-Valued Fuzzy Set Theory: Properties, Algorithms and Applications. Studies in Fuzziness and Soft Computing, vol. 367. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93910-0

  19. Roldán-Gómez, J., Boubeta-Puig, J., Carrillo-Mondéjar, J., Castelo Gómez, J.M., del Rincón, J.M.: An automatic complex event processing rules generation system for the recognition of real-time IoT attack patterns. Eng. Appl. Artif. Intell. 123, 106,344 (2023)

    Google Scholar 

  20. Sambuc, R.: Fonctions \(\phi \)-floues: application á l’aide au diagnostic en pathologie thyroidienne. Ph.D. thesis, Faculté de Médecine de Marseille (1975). (in French)

    Google Scholar 

  21. Sikora, M., Proksa, P.: Rules quality function for generation approximate rules algorithm. Studia Informatica 21(3), 161–176 (2000)

    MATH  Google Scholar 

  22. Tsur, D.: Algorithms for 2-club cluster deletion problems using automated generation of branching rules. Theor. Comput. Sci. 984, 114,321 (2024)

    Google Scholar 

  23. Turksen, I.B.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst. 20(2), 191–210 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning-i. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  26. Zapata, H., et al.: Interval-valued implications and interval-valued strong equality index with admissible orders. Int. J. Approximate Reasoning 88, 91–109 (2017). https://doi.org/10.1016/j.ijar.2017.05.009

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Pękala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gil, D., Pękala, B. (2025). The Hybrid Method of Inference System Based on Experts’ Rules and Machine Learning with an Uncertainty Aspect. In: Lesot, MJ., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2024. Lecture Notes in Networks and Systems, vol 1176. Springer, Cham. https://doi.org/10.1007/978-3-031-73997-2_25

Download citation

Publish with us

Policies and ethics