Skip to main content

A WiSARD Network Approach for 5G MIMO Beam Selection

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2024)

Abstract

The integration of context information and machine learning techniques can enhance the capabilities of 5G/6G networks when dealing with the beam selection problem. This paper proposes the use of a Weightless Neural Network (WiSARD) with multimodal data as input to address this problem. The performance of the WiSARD is compared to classic machine learning algorithms (KNN, Decision Tree, SVC, Random Forest) based on the top-k accuracy in a vehicular network. The simulation results indicate that the WiSARD is a competitive method for this scenario and can be a valuable asset for future cellular networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.lasse.ufpa.br/raymobtime/.

  2. 2.

    https://cadmapper.com.

  3. 3.

    https://www.openstreetmap.org/#map=4/-15.13/-53.19.

  4. 4.

    https://sumo.dlr.de/userdoc/.

  5. 5.

    https://www.remcom.com/wireless-insite-em-propagation-software/.

  6. 6.

    https://github.com/IAZero/wisardpkg.

References

  1. Aleksander, I., Gregorio, M.D., França, F.M.G., Lima, P.M.V., Morton, H.: A brief introduction to Weightless Neural Systems. In: 17th European Symposium on Artificial Neural Networks, ESANN 2009, Bruges, Belgium, April 22-24, 2009, Proceedings (2009)

    Google Scholar 

  2. Alves, D.S., Cardoso, D.O., Carneiro, H.C., França, F.M., Lima, P.M.: An empirical study of the influence of data structures on the performance of VG-RAM classifiers. In: 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence, pp. 388–393 (2013)

    Google Scholar 

  3. Barbosa, R., Cardoso, D.O., Carvalho, D., França, F.M.G.: Weightless neuro-symbolic GPS trajectory classification. Neurocomputing 298, 100–108 (2018)

    Article  Google Scholar 

  4. Brilhante, D.d.S., et al.: A literature survey on AI-aided beamforming and beam management for 5g and 6g systems. Sensors 23(9), 4359 (2023)

    Google Scholar 

  5. Cardoso, D.O., et al.: Financial credit analysis via a clustering weightless neural classifier. Neurocomputing 183, 70–78 (2016)

    Article  Google Scholar 

  6. Cardoso, D.O., França, F.M.G., Gama, J.: WCDS: a two-phase weightless neural system for data stream clustering. N. Gener. Comput. 35(4), 391–416 (2017)

    Article  Google Scholar 

  7. Cardoso, D.O., Gama, J., Gregorio, M.D., França, F.M.G., Giordano, M., Lima, P.M.V.: WIPS: the wisard indoor positioning system. In: 21st European Symposium on Artificial Neural Networks, ESANN 2013, Bruges, Belgium, April 24-26, 2013 (2013)

    Google Scholar 

  8. Chatzoglou, E., Goudos, S.K.: Beam-selection for 5G/B5G networks using machine learning: a comparative study. Sensors 23(6), 2967 (2023)

    Article  Google Scholar 

  9. Dias, M., Klautau, A., González-Prelcic, N., Heath, R.W.: Position and LIDAR-aided mmWave beam selection using deep learning. In: 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2019)

    Google Scholar 

  10. Ferreira, V.C., et al.: A feasible FPGA weightless neural accelerator. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2019)

    Google Scholar 

  11. Forechi, A., et al.: A high performance approach. Neurocomputing, Fat-Fast VG-RAM WNN: 183, 56–69 (2016)

    Google Scholar 

  12. GSM Association: The mobile economy 2022. https://tinyurl.com/3u5426yx, visited on 2024-02-29

  13. Kappaun, A., Camargo, K., Rangel, F., Firmino, F., Lima, P.M.V., Oliveira, J.: Evaluating Binary Encoding Techniques for WiSARD. In: 2016 5th Brazilian Conference on Intelligent Systems (BRACIS), pp. 103–108 (2016)

    Google Scholar 

  14. Klautau, A., Batista, P., González-Prelcic, N., Wang, Y., Heath, R.W.: 5G MIMO data for machine learning: application to beam-selection using deep learning. In: 2018 Information Theory and Applications Workshop (ITA), pp. 1–9 (2018)

    Google Scholar 

  15. Klautau, A., González-Prelcic, N., Heath, R.W.: LIDAR data for deep learning-based mmWave beam-selection. IEEE Wireless Commun. Lett. 8(3), 909–912 (2019)

    Article  Google Scholar 

  16. Klautau, A., de Oliveira, A., Pamplona Trindade, I., Alves, W.: Generating MIMO Channels for 6G Virtual Worlds Using Ray-Tracing Simulations. In: 2021 IEEE Statistical Signal Processing Workshop (SSP), pp. 595–599 (2021)

    Google Scholar 

  17. Lello, G.C.D., Caldeira, J.F., Aredes, M., França, F.M.G., Lima, P.M.V.: Weightless neural networks applied to nonintrusive load monitoring. In: 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 844–851 (2020)

    Google Scholar 

  18. Ludermir, T.B., Carvalho, A.C.P.d.L.F.d., Braga, A.P., Souto, M.C.P.d.: Weightless neural models: a review of current and past works. Neural Computing Surveys (1999)

    Google Scholar 

  19. Lyrio, L.J., Oliveira-Santos, T., Badue, C., De Souza, A.F.: Image-based mapping, global localization and position tracking using VG-RAM weightless neural networks. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3603–3610 (2015)

    Google Scholar 

  20. Miranda, I.D., et al.: LogicWiSARD: memoryless synthesis of weightless neural networks. In: 2022 IEEE 33rd International Conference on Application-specific Systems, Architectures and Processors (ASAP), pp. 19–26 (2022). https://doi.org/10.1109/ASAP54787.2022.00014

  21. Rahimi, M., Singh, H., Prasad, R.: Mm-waves Promises and Challenges in Future Wireless Communication: 5G. In: 5G Outlook - Innovations and Applications. River Publishers (2016)

    Google Scholar 

  22. Rangel, F.M., de Faria, F.F., Lima, P.M.V., Oliveira, J.: Semi-supervised classification of social textual data using wisard. In: 24th European Symposium on Artificial Neural Networks, ESANN 2016, Bruges, Belgium, April 27-29, 2016 (2016)

    Google Scholar 

  23. Salehi, B., et al.: Deep learning on multimodal sensor data at the wireless edge for vehicular network. IEEE Trans. Veh. Technol. 71(7), 7639–7655 (2022)

    Article  Google Scholar 

  24. Va, V., Choi, J., Shimizu, T., Bansal, G., Heath, R.W.: Inverse multipath fingerprinting for millimeter wave V2I beam alignment. IEEE Trans. Veh. Technol. 67(5), 4042–4058 (2018)

    Article  Google Scholar 

  25. Xu, W., Gao, F., Jin, S., Alkhateeb, A.: 3D scene-based beam selection for mmWave communications. IEEE Wireless Commun. Lett. 9(11), 1850–1854 (2020)

    Article  Google Scholar 

  26. Zecchin, M., Mashhadi, M.B., Jankowski, M., Gündüz, D., Kountouris, M., Gesbert, D.: LIDAR and position-aided mmWave beam selection with non-local CNNs and curriculum training. IEEE Trans. Veh. Technol. 71(3), 2979–2990 (2022)

    Article  Google Scholar 

  27. Zheng, Y., Chen, S., Zhao, R.: A Deep learning-based mmWave beam selection framework by using LiDAR data. In: 2021 33rd Chinese Control and Decision Conference (CCDC), pp. 915–920 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), RNP with resources from MCTIC (under the grant 01250.075413/2018-04 from the Radiocommunication Reference Center project of the National Institute of Telecommunications, Brazil) and the MCTI/CGI.br and the São Paulo Research Foundation (FAPESP) (under grants 2018/23097-3 (SFI2), 2020/05127-2 (SAMURAI) and 2020/05152-7 (PROFISSA)). Douglas O. Cardoso acknowledges the financial support by the portuguese Foundation for Science and Technology (Fundação para a Ciência e a Tecnologia, FCT) through grants with the following DOIs: 10.54499/UIDB/00022/2020, 10.54499/UIDP/00022/2020, 10.54499/UIDB/05567/2020, and 10.54499/UIDP/05567/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna C. Manjarres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manjarres, J.C., Cardoso, D.O., Klautau, A., de Rezende, J.F. (2024). A WiSARD Network Approach for 5G MIMO Beam Selection. In: Lesot, MJ., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2024. Lecture Notes in Networks and Systems, vol 1174. Springer, Cham. https://doi.org/10.1007/978-3-031-74003-9_29

Download citation

Publish with us

Policies and ethics