Abstract
The integration of context information and machine learning techniques can enhance the capabilities of 5G/6G networks when dealing with the beam selection problem. This paper proposes the use of a Weightless Neural Network (WiSARD) with multimodal data as input to address this problem. The performance of the WiSARD is compared to classic machine learning algorithms (KNN, Decision Tree, SVC, Random Forest) based on the top-k accuracy in a vehicular network. The simulation results indicate that the WiSARD is a competitive method for this scenario and can be a valuable asset for future cellular networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Aleksander, I., Gregorio, M.D., França, F.M.G., Lima, P.M.V., Morton, H.: A brief introduction to Weightless Neural Systems. In: 17th European Symposium on Artificial Neural Networks, ESANN 2009, Bruges, Belgium, April 22-24, 2009, Proceedings (2009)
Alves, D.S., Cardoso, D.O., Carneiro, H.C., França, F.M., Lima, P.M.: An empirical study of the influence of data structures on the performance of VG-RAM classifiers. In: 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence, pp. 388–393 (2013)
Barbosa, R., Cardoso, D.O., Carvalho, D., França, F.M.G.: Weightless neuro-symbolic GPS trajectory classification. Neurocomputing 298, 100–108 (2018)
Brilhante, D.d.S., et al.: A literature survey on AI-aided beamforming and beam management for 5g and 6g systems. Sensors 23(9), 4359 (2023)
Cardoso, D.O., et al.: Financial credit analysis via a clustering weightless neural classifier. Neurocomputing 183, 70–78 (2016)
Cardoso, D.O., França, F.M.G., Gama, J.: WCDS: a two-phase weightless neural system for data stream clustering. N. Gener. Comput. 35(4), 391–416 (2017)
Cardoso, D.O., Gama, J., Gregorio, M.D., França, F.M.G., Giordano, M., Lima, P.M.V.: WIPS: the wisard indoor positioning system. In: 21st European Symposium on Artificial Neural Networks, ESANN 2013, Bruges, Belgium, April 24-26, 2013 (2013)
Chatzoglou, E., Goudos, S.K.: Beam-selection for 5G/B5G networks using machine learning: a comparative study. Sensors 23(6), 2967 (2023)
Dias, M., Klautau, A., González-Prelcic, N., Heath, R.W.: Position and LIDAR-aided mmWave beam selection using deep learning. In: 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2019)
Ferreira, V.C., et al.: A feasible FPGA weightless neural accelerator. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2019)
Forechi, A., et al.: A high performance approach. Neurocomputing, Fat-Fast VG-RAM WNN: 183, 56–69 (2016)
GSM Association: The mobile economy 2022. https://tinyurl.com/3u5426yx, visited on 2024-02-29
Kappaun, A., Camargo, K., Rangel, F., Firmino, F., Lima, P.M.V., Oliveira, J.: Evaluating Binary Encoding Techniques for WiSARD. In: 2016 5th Brazilian Conference on Intelligent Systems (BRACIS), pp. 103–108 (2016)
Klautau, A., Batista, P., González-Prelcic, N., Wang, Y., Heath, R.W.: 5G MIMO data for machine learning: application to beam-selection using deep learning. In: 2018 Information Theory and Applications Workshop (ITA), pp. 1–9 (2018)
Klautau, A., González-Prelcic, N., Heath, R.W.: LIDAR data for deep learning-based mmWave beam-selection. IEEE Wireless Commun. Lett. 8(3), 909–912 (2019)
Klautau, A., de Oliveira, A., Pamplona Trindade, I., Alves, W.: Generating MIMO Channels for 6G Virtual Worlds Using Ray-Tracing Simulations. In: 2021 IEEE Statistical Signal Processing Workshop (SSP), pp. 595–599 (2021)
Lello, G.C.D., Caldeira, J.F., Aredes, M., França, F.M.G., Lima, P.M.V.: Weightless neural networks applied to nonintrusive load monitoring. In: 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 844–851 (2020)
Ludermir, T.B., Carvalho, A.C.P.d.L.F.d., Braga, A.P., Souto, M.C.P.d.: Weightless neural models: a review of current and past works. Neural Computing Surveys (1999)
Lyrio, L.J., Oliveira-Santos, T., Badue, C., De Souza, A.F.: Image-based mapping, global localization and position tracking using VG-RAM weightless neural networks. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3603–3610 (2015)
Miranda, I.D., et al.: LogicWiSARD: memoryless synthesis of weightless neural networks. In: 2022 IEEE 33rd International Conference on Application-specific Systems, Architectures and Processors (ASAP), pp. 19–26 (2022). https://doi.org/10.1109/ASAP54787.2022.00014
Rahimi, M., Singh, H., Prasad, R.: Mm-waves Promises and Challenges in Future Wireless Communication: 5G. In: 5G Outlook - Innovations and Applications. River Publishers (2016)
Rangel, F.M., de Faria, F.F., Lima, P.M.V., Oliveira, J.: Semi-supervised classification of social textual data using wisard. In: 24th European Symposium on Artificial Neural Networks, ESANN 2016, Bruges, Belgium, April 27-29, 2016 (2016)
Salehi, B., et al.: Deep learning on multimodal sensor data at the wireless edge for vehicular network. IEEE Trans. Veh. Technol. 71(7), 7639–7655 (2022)
Va, V., Choi, J., Shimizu, T., Bansal, G., Heath, R.W.: Inverse multipath fingerprinting for millimeter wave V2I beam alignment. IEEE Trans. Veh. Technol. 67(5), 4042–4058 (2018)
Xu, W., Gao, F., Jin, S., Alkhateeb, A.: 3D scene-based beam selection for mmWave communications. IEEE Wireless Commun. Lett. 9(11), 1850–1854 (2020)
Zecchin, M., Mashhadi, M.B., Jankowski, M., Gündüz, D., Kountouris, M., Gesbert, D.: LIDAR and position-aided mmWave beam selection with non-local CNNs and curriculum training. IEEE Trans. Veh. Technol. 71(3), 2979–2990 (2022)
Zheng, Y., Chen, S., Zhao, R.: A Deep learning-based mmWave beam selection framework by using LiDAR data. In: 2021 33rd Chinese Control and Decision Conference (CCDC), pp. 915–920 (2021)
Acknowledgments
This work was partially supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), RNP with resources from MCTIC (under the grant 01250.075413/2018-04 from the Radiocommunication Reference Center project of the National Institute of Telecommunications, Brazil) and the MCTI/CGI.br and the São Paulo Research Foundation (FAPESP) (under grants 2018/23097-3 (SFI2), 2020/05127-2 (SAMURAI) and 2020/05152-7 (PROFISSA)). Douglas O. Cardoso acknowledges the financial support by the portuguese Foundation for Science and Technology (Fundação para a Ciência e a Tecnologia, FCT) through grants with the following DOIs: 10.54499/UIDB/00022/2020, 10.54499/UIDP/00022/2020, 10.54499/UIDB/05567/2020, and 10.54499/UIDP/05567/2020.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Manjarres, J.C., Cardoso, D.O., Klautau, A., de Rezende, J.F. (2024). A WiSARD Network Approach for 5G MIMO Beam Selection. In: Lesot, MJ., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2024. Lecture Notes in Networks and Systems, vol 1174. Springer, Cham. https://doi.org/10.1007/978-3-031-74003-9_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-74003-9_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-74002-2
Online ISBN: 978-3-031-74003-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)