Skip to main content

Enhancing Bayesian Network Structural Learning with Monte Carlo Tree Search

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2024)

Abstract

This article presents MCTS-BN, an adaptation of the Monte Carlo Tree Search (MCTS) algorithm for the structural learning of Bayesian Networks (BNs). Initially designed for game tree exploration, MCTS has been repurposed to address the challenge of learning BN structures by exploring the search space of potential ancestral orders in Bayesian Networks. Then, it employs Hill Climbing (HC) to derive a Bayesian Network structure from each order. In large BNs, where the search space for variable orders becomes vast, using completely random orders during the rollout phase is often unreliable and impractical. We adopt a semi-randomized approach to address this challenge by incorporating variable orders obtained from other heuristic search algorithms such as Greedy Equivalent Search (GES), PC, or HC itself. This hybrid strategy mitigates the computational burden and enhances the reliability of the rollout process. Experimental evaluations demonstrate the effectiveness of MCTS-BN in improving BNs generated by traditional structural learning algorithms, exhibiting robust performance even when base algorithm orders are suboptimal and surpassing the gold standard when provided with favorable orders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.bnlearn.com/bnrepository/.

  2. 2.

    https://github.com/cmu-phil/tetrad/releases/tag/v7.1.2-2.

  3. 3.

    https://github.com/ptorrijos99/MCTS-BN.

  4. 4.

    https://www.openml.org/search?type=data&uploader_id=%3D_33148 &tags=bnlearn.

References

  1. Alonso, J.I., de la Ossa, L., Gámez, J.A., Puerta, J.M.: On the use of local search heuristics to improve GES-based Bayesian network learning. Appl. Soft Comput. 64, 366–376 (2018)

    Article  Google Scholar 

  2. Bai, F., Ju, X., Wang, S., Zhou, W., Liu, F.: Wind farm layout optimization using adaptive evolutionary algorithm with Monte Carlo Tree Search reinforcement learning. Energy Convers. Manage. 252, 115047 (2022)

    Article  Google Scholar 

  3. Bryant, P., Pozzati, G., Zhu, W., Shenoy, A., Kundrotas, P., Elofsson, A.: Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search. Nat. Commun. 13(1) (2022)

    Google Scholar 

  4. Chaslot, G.M.J.-B., Winands, M.H.M., van den Herik, H.J.: Parallel Monte-carlo tree search. In: van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 60–71. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87608-3_6

    Chapter  Google Scholar 

  5. Chickering, D.M.: Optimal structure identification with greedy search. J. Mach. Learn. Res. 3, 507–554 (2002)

    Google Scholar 

  6. Fenton, N., Neil, M.: Risk Assessment and Decision Analysis with Bayesian Networks. Chapman and Hall/CRC (2018)

    Google Scholar 

  7. Gámez, J.A., Mateo, J.L., Puerta, J.M.: Learning Bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood. Data Min. Knowl. Disc. 22(1), 106–148 (2011)

    Article  MathSciNet  Google Scholar 

  8. Heckerman, D., Geiger, D., Chickering, D.M.: Learning bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)

    Article  Google Scholar 

  9. Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press, Cambridge, MA (1960)

    Google Scholar 

  10. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn. Springer, New York (2007)

    Book  Google Scholar 

  11. Kajita, S., Kinjo, T., Nishi, T.: Autonomous molecular design by Monte-Carlo tree search and rapid evaluations using molecular dynamics simulations. Commun. Phy. 3(1) (2020)

    Google Scholar 

  12. Kjaerulff, U.B., Madsen, A.L.: Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis. Springer Publishing Company, 2nd edn. (2013)

    Google Scholar 

  13. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning, pp. 282–293. Springer Berlin Heidelberg (2006)

    Google Scholar 

  14. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning. The MIT Press (2009)

    Google Scholar 

  15. Labbe, Y., et al.: Monte-Carlo tree search for efficient visually guided rearrangement planning. IEEE Rob. Autom. Lett. 5(2), 3715–3722 (2020)

    Article  Google Scholar 

  16. Leurent, E., Maillard, O.A.: Monte-carlo graph search: the value of merging similar states. In: Pan, S.J., Sugiyama, M. (eds.) Proceedings of The 12th Asian Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 129, pp. 577–592. PMLR (2020)

    Google Scholar 

  17. Li, A., van Beek, P.: Bayesian network structure learning with side constraints. In: Kratochvíl, V., Studený, M. (eds.) Proceedings of the Ninth International Conference on Probabilistic Graphical Models. Proceedings of Machine Learning Research, vol. 72, pp. 225–236. PMLR (2018)

    Google Scholar 

  18. McLachlan, S., Dube, K., Hitman, G.A., Fenton, N.E., Kyrimi, E.: Bayesian networks in healthcare: distribution by medical condition. Artif. Intell. Med. 107, 101912 (2020)

    Article  Google Scholar 

  19. Mo, S., Pei, X., Wu, C.: Safe reinforcement learning for autonomous vehicle using monte carlo tree search. IEEE Trans. Intell. Transp. Syst. 23(7), 6766–6773 (2022)

    Article  Google Scholar 

  20. Perez, D., Mostaghim, S., Samothrakis, S., Lucas, S.M.: Multiobjective monte carlo tree search for real-time games. IEEE Trans. Comput. Intell. AI Games 7(4), 347–360 (2015)

    Article  Google Scholar 

  21. Ramsey, J., Glymour, M., Sanchez-Romero, R., Glymour, C.: A million variables and more: the fast greedy equivalence search algorithm for learning high-dimensional graphical causal models, with an application to functional magnetic resonance images. Int. J. Data Sci. Anal. 3, 121–129 (2017)

    Article  Google Scholar 

  22. Scanagatta, M., Salmerón, A., Stella, F.: A survey on bayesian network structure learning from data. Prog. Artif. Intell. 8(4), 425–439 (2019)

    Article  Google Scholar 

  23. Scutari, M.: Learning bayesian networks with the bnlearn R Package. J. Stat. Softw. 35(3), 1–22 (2010)

    Article  Google Scholar 

  24. Sevinc, V., Kucuk, O., Goltas, M.: A bayesian network model for prediction and analysis of possible forest fire causes. For. Ecol. Manage. 457, 117723 (2020)

    Article  Google Scholar 

  25. Silver, D., Huang, A., Maddison, C.J., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  26. Silver, D., Hubert, T., Schrittwieser, J., et al.: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362(6419), 1140–1144 (2018)

    Article  MathSciNet  Google Scholar 

  27. Spirtes, P., Glymour, C., Scheimes, R.: Causation. Prediction and Search. Springer- Verlag, New York, USA (1993)

    Google Scholar 

  28. Weng, D., Chen, R., Zhang, J., Bao, J., Zheng, Y., Wu, Y.: Pareto-optimal transit route planning with multi-objective monte-carlo tree search. IEEE Trans. Intell. Transp. Syst. 22(2), 1185–1195 (2021)

    Article  Google Scholar 

  29. Xie, X., et al.: New theoretical ISM-K2 Bayesian network model for evaluating vaccination effectiveness. J. Ambient. Intell. Humaniz. Comput. 14(9), 12789–12805 (2022)

    Article  Google Scholar 

  30. Świechowski, M., Godlewski, K., Sawicki, B., Mańdziuk, J.: Monte Carlo Tree Search: a review of recent modifications and applications. Artif. Intell. Rev. 56(3), 2497–2562 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The following projects have funded this work: SBPLY/21/180225/000062 by the Government of Castilla-La Mancha and “ERDF A way of making Europe”; PID2022-139293NB-C32, TED2021-131291B-I00 and FPU21/01074 by MCIN/AEI/10.13039/501100011033 and “ESF Investing your future”; 2022-GRIN-34437 and 2019-PREDUCLM-10188 by Universidad de Castilla-La Mancha and ERDF funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Torrijos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laborda, J.D., Torrijos, P., Puerta, J.M., Gámez, J.A. (2024). Enhancing Bayesian Network Structural Learning with Monte Carlo Tree Search. In: Lesot, MJ., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2024. Lecture Notes in Networks and Systems, vol 1174. Springer, Cham. https://doi.org/10.1007/978-3-031-74003-9_32

Download citation

Publish with us

Policies and ethics