Skip to main content

A New Ensemble with Partition Size Variation Applied to Wind Speed Time Series

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2024)

Abstract

Wind speed time series exhibit complex patterns, thus integrating wind energy into the electrical system is challenging. This requires specialized skills for operations and planning practices. Training expert predictors on different parts of the time series enables the identification of complex local patterns. However, the partitioning procedure reduces the number of training instances. So, investigating the size of training partitions for an ensemble is desirable for predicting wind speed. Therefore, this paper proposes a homogeneous ensemble for local pattern recognition denoted as LocPart, that varies in partition size. The results of the Diebold-Mariano hypothesis test show promise for the LocPart method applied to three wind speed time series. The comparison was made relative to individual and bagging methods that use a global mapping of the respective base model of the proposal. The LocPart method with LSTM, ARIMA, and ELM base models won in 100%, 83%, and 50% of the cases, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Qu, Z., Mao, W., Zhang, K., Zhang, W., Li, Z.: Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network. Renew. Energy 133, 919–929 (2019)

    Article  Google Scholar 

  2. Jiang, P., Wang, B., Li, H., Lu, H.: Modeling for chaotic time series based on linear and nonlinear framework: application to wind speed forecasting. Energy 173, 468–482 (2019)

    Article  Google Scholar 

  3. Ahmadi, M., Khashei, M.: Current status of hybrid structures in wind forecasting. Eng. Appl. Artif. Intell. 99, 104133 (2021)

    Article  Google Scholar 

  4. Hu, J., Wang, J., Zeng, G.: A hybrid forecasting approach applied to wind speed time series. Renew. Energy 60, 185–194 (2013)

    Article  Google Scholar 

  5. Ferreira, M., Santos, A., Lucio, P.: Short-term forecast of wind speed through mathematical models. Energy Rep. 5, 1172–1184 (2019)

    Article  Google Scholar 

  6. de Júnior, D.S.O.S., de Mattos Neto, P.S., de Oliveira, J.F., Cavalcanti, G.D.: A hybrid system based on ensemble learning to model residuals for time series forecasting. Inf. Sci. 649, 119614 (2023)

    Google Scholar 

  7. de Mattos Neto, P.S., Cavalcanti, G.D., Firmino, P.R., Silva, E.G., Nova Filho, S.R.V.: A temporal-window framework for modelling and forecasting time series. Knowl. Based Syst. 193, 105476 (2020)

    Google Scholar 

  8. Petropoulos, F., Hyndman, R.J., Bergmeir, C.: Exploring the sources of uncertainty: why does bagging for time series forecasting work? Eur. J. Oper. Res. 268(2), 545–554 (2018)

    Article  Google Scholar 

  9. Bergmeir, C., Hyndman, R.J., Benítez, J.M.: Bagging exponential smoothing methods using STL decomposition and box-cox transformation. Int. J. Forecast. 32(2), 303–312 (2016)

    Article  Google Scholar 

  10. Sergio, A.T., de Lima, T.P., Ludermir, T.B.: Dynamic selection of forecast combiners. Neurocomputing 218, 37–50 (2016)

    Article  Google Scholar 

  11. Ruiz-Aguilar, J.J., Turias, I., González-Enrique, J., Urda, D., Elizondo, D.: A permutation entropy-based EMD-ANN forecasting ensemble approach for wind speed prediction. Neural Comput. Appl. 33(7), 2369–2391 (2021)

    Article  Google Scholar 

  12. Jiang, Z., Che, J., Wang, L.: Ultra-short-term wind speed forecasting based on EMD-VAR model and spatial correlation. Energy Convers. Manage. 250, 114919 (2021)

    Article  Google Scholar 

  13. Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice. OTexts, 3 ed. (2021)

    Google Scholar 

  14. Bowden, G.J., Maier, H.R., Dandy, G.C.: Optimal division of data for neural network models in water resources applications. Water Resour. Res. 38(2), 2–1 (2002)

    Google Scholar 

  15. Dawson, C.W., Wilby, R.: An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 43(1), 47–66 (1998)

    Article  Google Scholar 

  16. Torres, J.L., Garcia, A., De Blas, M., De Francisco, A.: Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol. Energy 79(1), 65–77 (2005)

    Article  Google Scholar 

  17. Salcedo-Sanz, S., Ortiz-Garcı, E.G., Pérez-Bellido, Á.M., Portilla-Figueras, A., Prieto, L., et al.: Short term wind speed prediction based on evolutionary support vector regression algorithms. Expert Syst. Appl. 38(4), 4052–4057 (2011)

    Article  Google Scholar 

  18. Saavedra-Moreno, B., Salcedo-Sanz, S., Carro-Calvo, L., Gascón-Moreno, J., Jiménez-Fernández, S., Prieto, L.: Very fast training neural-computation techniques for real measure-correlate-predict wind operations in wind farms. J. Wind Eng. Ind. Aerodyn. 116, 49–60 (2013)

    Article  Google Scholar 

  19. Liu, X., Lin, Z., Feng, Z.: Short-term offshore wind speed forecast by seasonal ARIMA-A comparison against GRU and LSTM. Energy 227, 120492 (2021)

    Article  Google Scholar 

  20. INPE. Rede do sistema de organização nacional de dados ambientais (2020). http://sonda.ccst.inpe.br/index.html. Accessed 27 Jul 2023

  21. ABEEólica, A.B.E.E.: Abeeólica | infovento. INFOVENTO 31, 15 de junho de 2023 (2023)

    Google Scholar 

  22. Cerqueira, V., Torgo, L., Soares, C.: A case study comparing machine learning with statistical methods for time series forecasting: size matters. J. Intell. Inf. Syst. 59(2), 415–433 (2022)

    Article  Google Scholar 

  23. Adhikari, R., Verma, G., Khandelwal, I.: A model ranking based selective ensemble approach for time series forecasting. Procedia Comput. Sci. 48, 14–21 (2015)

    Article  Google Scholar 

  24. R Core Team. R: A language and environment for statistical computing (2023)

    Google Scholar 

  25. Tu, C.-S., Hong, C.-M., Huang, H.-S., Chen, C.-H.: Short term wind power prediction based on data regression and enhanced support vector machine. Energies 13(23), 6319 (2020)

    Article  Google Scholar 

  26. Diebold, F.X., Mariano, R.S.: Comparing predictive accuracy. J. Bus. Econ. Stat. 13(3), 253–263 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo M. Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almeida, D.M., Neto, P.S.G.d.M., Cunha, D.C. (2025). A New Ensemble with Partition Size Variation Applied to Wind Speed Time Series. In: Quintián, H., et al. Hybrid Artificial Intelligent Systems. HAIS 2024. Lecture Notes in Computer Science(), vol 14858. Springer, Cham. https://doi.org/10.1007/978-3-031-74186-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74186-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74185-2

  • Online ISBN: 978-3-031-74186-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics