Abstract
Connections of intuitionistic and intermediate logics with logic programming have been extensively studied in the literature. Among the different results in the literature we find equilibrium logic (Pearce, 1996) and Safe beliefs (Osorio et al., 2005). Pearce’s approach admits a characterisation in terms of a fixpoint (consequence) operator on the here-and-there intermediate logic (Heyting, 1930), which is similar to the notion of theory completion in default and autoepistemic logics. Osorio’s safe beliefs are also given in terms of a fixpoint operator under intuitionistic logic semantics. In this latter case, intuitionistic logic can be replaced by any intermediate logic without altering the result.
In this paper we consider temporal equilibrium logic, an combination of equilibrium logic and linear-time temporal logic. In this context we extend Pearce’s and Osorio’s approach to temporal case and we discuss the relation of intuitionistic temporal logic and temporal logic programming.
This work was partially funded by DFG grant SCHA 550/15 (Germany), Etoiles Montantes CTASP at Region Pays de la Loire (France), Xunta de Galicia grant GPC ED431B 2022/33, and MCIN AEI/10.13039/501100011033 grant PID2020-116201GB-I00 (Spain).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For simplicity, we admit here a set of atoms in the right part of the semantic consequence operator. By
we mean
, for all \(p \in T\).
References
Abadi, M., Manna, Z.: Temporal logic programming. J. Symb. Comput. 8(3), 277–295 (1989)
Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium logic: a survey. J. Appl. Non-Classical Logics 23(1–2), 2–24 (2013)
Aguado, F., et al.: Linear-time temporal answer set programming. Theory Pract. Logic Program. 23(1), 2–56 (2023)
Balbiani, P., Diéguez, M.: Temporal here and there. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 81–96. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8_6
Balbiani, P., Boudou, J., Diéguez, M., Fernández-Duque, D.: Intuitionistic linear temporal logics. ACM Trans. Comput. Log. 21(2), 14:1–14:32 (2020)
Becker, A., Cabalar, P., Diéguez, M., Schaub, T., Schuhmann, A.: Metric temporal equilibrium logic over timed traces. Theory Pract. Log. Program. (2024, to appear)
Besnard, P.: An Introduction to Default Logic. Symbolic Computation—Artifical Intelligence. Springer, Heidelberg (1989)
Bosser, A., Cabalar, P., Diéguez, M., Schaub, T.: Introducing temporal stable models for linear dynamic logic. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Proceedings of the Sixteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2018), pp. 12–21. AAAI Press (2018)
Chagrov, A.V., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides, vol. 35. Oxford University Press, Oxford (1997)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference and Symposium of Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press (1988)
Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. J. Log. Program. 17(2–4), 301–321 (1993)
Giordano, L., Martelli, A., Theseider Dupré, D.: Reasoning about actions with temporal answer sets. Theory Pract. Logic Program. 13(2), 201–225 (2013)
Harel, D., Tiuryn, J., Kozen, D.: Dynamic Logic. MIT Press, Cambridge (2000)
Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte der Preussischen Akademie der Wissenschaften, pp. 42–56. Deutsche Akademie der Wissenschaften zu Berlin (1930), reprint in Logik-Texte: Kommentierte Auswahl zur Geschichte der Modernen Logik, Akademie-Verlag (1986)
Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138(1–2), 39–54 (2002)
Lifschitz, V.: Thirteen definitions of a stable model. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 488–503. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15025-8_24
Marek, V., Truszczyński, M.: Nonmonotonic Logic: Context-dependent Reasoning. Artifical Intelligence. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-662-02906-0
Mints, G.: A Short Introduction to Intuitionistic Logic. Kluwer Academic Publishers, USA (2000)
Osorio, M., Navarro Pérez, J.A., Arrazola, J.: Safe beliefs for propositional theories. Ann. Pure Appl. Logic 134(1), 63–82 (2005)
Pearce, D.: From here to there: stable negation in logic programming. In: Gabbay, D., Wansing, H. (eds.) What is Negation?, pp. 161–181. Kluwer Academic Publishers (1999)
Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1–2), 3–41 (2006)
Pnueli, A.: The temporal logic of programs. In: Proceedings of the Eight-Teenth Symposium on Foundations of Computer Science (FOCS 1977), pp. 46–57. IEEE Computer Society Press (1977)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cabalar, P., Diéguez, M., Laferrière, F., Schaub, T., Stéphan, I. (2025). A Fixpoint Characterisation of Temporal Equilibrium Logic. In: Dodaro, C., Gupta, G., Martinez, M.V. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2024. Lecture Notes in Computer Science(), vol 15245. Springer, Cham. https://doi.org/10.1007/978-3-031-74209-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-74209-5_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-74208-8
Online ISBN: 978-3-031-74209-5
eBook Packages: Computer ScienceComputer Science (R0)