Skip to main content

A Fixpoint Characterisation of Temporal Equilibrium Logic

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15245))

  • 197 Accesses

Abstract

Connections of intuitionistic and intermediate logics with logic programming have been extensively studied in the literature. Among the different results in the literature we find equilibrium logic (Pearce, 1996) and Safe beliefs (Osorio et al., 2005). Pearce’s approach admits a characterisation in terms of a fixpoint (consequence) operator on the here-and-there intermediate logic (Heyting, 1930), which is similar to the notion of theory completion in default and autoepistemic logics. Osorio’s safe beliefs are also given in terms of a fixpoint operator under intuitionistic logic semantics. In this latter case, intuitionistic logic can be replaced by any intermediate logic without altering the result.

In this paper we consider temporal equilibrium logic, an combination of equilibrium logic and linear-time temporal logic. In this context we extend Pearce’s and Osorio’s approach to temporal case and we discuss the relation of intuitionistic temporal logic and temporal logic programming.

This work was partially funded by DFG grant SCHA 550/15 (Germany), Etoiles Montantes CTASP at Region Pays de la Loire (France), Xunta de Galicia grant GPC ED431B 2022/33, and MCIN AEI/10.13039/501100011033 grant PID2020-116201GB-I00 (Spain).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For simplicity, we admit here a set of atoms in the right part of the semantic consequence operator. By we mean , for all \(p \in T\).

References

  1. Abadi, M., Manna, Z.: Temporal logic programming. J. Symb. Comput. 8(3), 277–295 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium logic: a survey. J. Appl. Non-Classical Logics 23(1–2), 2–24 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aguado, F., et al.: Linear-time temporal answer set programming. Theory Pract. Logic Program. 23(1), 2–56 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balbiani, P., Diéguez, M.: Temporal here and there. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 81–96. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8_6

    Chapter  MATH  Google Scholar 

  5. Balbiani, P., Boudou, J., Diéguez, M., Fernández-Duque, D.: Intuitionistic linear temporal logics. ACM Trans. Comput. Log. 21(2), 14:1–14:32 (2020)

    Google Scholar 

  6. Becker, A., Cabalar, P., Diéguez, M., Schaub, T., Schuhmann, A.: Metric temporal equilibrium logic over timed traces. Theory Pract. Log. Program. (2024, to appear)

    Google Scholar 

  7. Besnard, P.: An Introduction to Default Logic. Symbolic Computation—Artifical Intelligence. Springer, Heidelberg (1989)

    Google Scholar 

  8. Bosser, A., Cabalar, P., Diéguez, M., Schaub, T.: Introducing temporal stable models for linear dynamic logic. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Proceedings of the Sixteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2018), pp. 12–21. AAAI Press (2018)

    Google Scholar 

  9. Chagrov, A.V., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides, vol. 35. Oxford University Press, Oxford (1997)

    Google Scholar 

  10. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference and Symposium of Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press (1988)

    Google Scholar 

  11. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. J. Log. Program. 17(2–4), 301–321 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giordano, L., Martelli, A., Theseider Dupré, D.: Reasoning about actions with temporal answer sets. Theory Pract. Logic Program. 13(2), 201–225 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harel, D., Tiuryn, J., Kozen, D.: Dynamic Logic. MIT Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  14. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte der Preussischen Akademie der Wissenschaften, pp. 42–56. Deutsche Akademie der Wissenschaften zu Berlin (1930), reprint in Logik-Texte: Kommentierte Auswahl zur Geschichte der Modernen Logik, Akademie-Verlag (1986)

    Google Scholar 

  15. Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. 138(1–2), 39–54 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lifschitz, V.: Thirteen definitions of a stable model. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 488–503. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15025-8_24

    Chapter  MATH  Google Scholar 

  17. Marek, V., Truszczyński, M.: Nonmonotonic Logic: Context-dependent Reasoning. Artifical Intelligence. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-662-02906-0

  18. Mints, G.: A Short Introduction to Intuitionistic Logic. Kluwer Academic Publishers, USA (2000)

    MATH  Google Scholar 

  19. Osorio, M., Navarro Pérez, J.A., Arrazola, J.: Safe beliefs for propositional theories. Ann. Pure Appl. Logic 134(1), 63–82 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pearce, D.: From here to there: stable negation in logic programming. In: Gabbay, D., Wansing, H. (eds.) What is Negation?, pp. 161–181. Kluwer Academic Publishers (1999)

    Google Scholar 

  21. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1–2), 3–41 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pnueli, A.: The temporal logic of programs. In: Proceedings of the Eight-Teenth Symposium on Foundations of Computer Science (FOCS 1977), pp. 46–57. IEEE Computer Society Press (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Diéguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cabalar, P., Diéguez, M., Laferrière, F., Schaub, T., Stéphan, I. (2025). A Fixpoint Characterisation of Temporal Equilibrium Logic. In: Dodaro, C., Gupta, G., Martinez, M.V. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2024. Lecture Notes in Computer Science(), vol 15245. Springer, Cham. https://doi.org/10.1007/978-3-031-74209-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74209-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74208-8

  • Online ISBN: 978-3-031-74209-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics