Abstract
Results of automated detection of complex patterns in temporal data, such as trajectories of moving objects, may be not good enough due to the use of strict pattern specifications derived from imprecise domain concepts. To address this challenge, we propose a novel visual analytics approach that combines expert knowledge and automated pattern detection results to construct features that effectively distinguish patterns of interest from other types of behaviour. These features are then used to create interactive visualisations enabling a human analyst to generate labelled examples for building a feature-based pattern classifier. We evaluate our approach through a case study focused on detecting trawling activities in fishing vessel trajectories, demonstrating significant improvements in pattern recognition by leveraging domain knowledge and incorporating human reasoning and feedback. Our contribution is a novel framework that integrates human expertise and analytical reasoning with ML or AI techniques, advancing the field of data analytics.
This work was supported by EU in project CrexData (grant agreement no. 101092749) and by Federal Ministry of Education and Research of Germany and the state of North-Rhine Westphalia as part of the Lamarr Institute for Machine Learning and Artificial Intelligence (Lamarr22B).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrienko, N., Andrienko, G.: Visual Analytics of Vessel Movement, pp. 149–170. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-61852-0_5
Andrienko, N., Andrienko, G., Adilova, L., Wrobel, S.: Visual analytics for human-centered machine learning. IEEE Comput. Graphics Appl. 42(1), 123–133 (2022). https://doi.org/10.1109/MCG.2021.3130314
Andrienko, N., Andrienko, G., Fuchs, G., Slingsby, A., Turkay, C., Wrobel, S.: Visual analytics for data scientists. Springer (2020). https://doi.org/10.1007/978-3-030-56146-8
Andrienko, N., Andrienko, G., Miksch, S., Schumann, H., Wrobel, S.: A theoretical model for pattern discovery in visual analytics. Visual Informatics 5(1), 23–42 (2021). https://doi.org/10.1016/j.visinf.2020.12.002
Artikis, A., Sergot, M., Paliouras, G.: An event calculus for event recognition. IEEE Trans. Knowl. Data Eng. 27(4), 895–908 (2015). https://doi.org/10.1109/TKDE.2014.2356476
Artikis, A., Zissis, D. (eds.): Guide to Maritime Informatics. Springer (2021).https://doi.org/10.1007/978-3-030-61852-0
Beeram, S., Kuchibhotla, S.: Time series analysis on univariate and multivariate variables: a comprehensive survey, pp. 119–126 (10 2020). https://doi.org/10.1007/978-981-15-5397-4_13
Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting flock patterns. Comput. Geom. 41(3), 111–125 (2008). https://doi.org/10.1016/j.comgeo.2007.10.003
Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)
Fix, E.: Discriminatory analysis: nonparametric discrimination, consistency properties. USAF school of Aviation Medicine (1951)
Höppner, F.: Time series abstraction methods - a survey. In: Informatik Bewegt: Informatik 2002 - 32. Jahrestagung Der Gesellschaft Für Informatik e.v. (GI), pp. 777–786. GI (2002)
Katzouris, N., Paliouras, G., Artikis, A.: Online learning probabilistic event calculus theories in answer set programming. Theory Pract. Logic Program. 23(2), 362–386 (2023). https://doi.org/10.1017/S1471068421000107
Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964). https://doi.org/10.1007/BF02289565
Lubba, C.H., Sethi, S.S., Knaute, P., Schultz, S.R., Fulcher, B.D., Jones, N.S.: Catch22: canonical time-series characteristics: selected through highly comparative time-series analysis. Data Min. Knowl. Discov. 33(6), 1821–1852 (nov 2019). https://doi.org/10.1007/s10618-019-00647-x
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(86), 2579–2605 (2008). http://jmlr.org/papers/v9/vandermaaten08a.html
Mantenoglou, P., Artikis, A., Paliouras, G.: Online probabilistic interval-based event calculus. In: Giacomo, G.D., Catalá, A., Dilkina, B., Milano, M., Barro, S., Bugarín, A., Lang, J. (eds.) ECAI 2020 - 24th European Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 2624–2631. IOS Press (2020).https://doi.org/10.3233/FAIA200399
Pitsikalis, M., Artikis, A.: Composite Maritime Event Recognition, pp. 233–260. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-61852-0_8
Ray, C., Dréo, R., Camossi, E., Jousselme, A.L.: Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance (Feb 2018). https://doi.org/10.5281/zenodo.1167595
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Andrienko, N., Andrienko, G., Artikis, A., Mantenoglou, P., Rinzivillo, S. (2025). Towards a Hybrid Human-Machine Discovery of Complex Movement Patterns. In: Meo, R., Silvestri, F. (eds) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2023. Communications in Computer and Information Science, vol 2134. Springer, Cham. https://doi.org/10.1007/978-3-031-74627-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-74627-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-74626-0
Online ISBN: 978-3-031-74627-7
eBook Packages: Artificial Intelligence (R0)