Skip to main content

Towards a Hybrid Human-Machine Discovery of Complex Movement Patterns

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2023)

Abstract

Results of automated detection of complex patterns in temporal data, such as trajectories of moving objects, may be not good enough due to the use of strict pattern specifications derived from imprecise domain concepts. To address this challenge, we propose a novel visual analytics approach that combines expert knowledge and automated pattern detection results to construct features that effectively distinguish patterns of interest from other types of behaviour. These features are then used to create interactive visualisations enabling a human analyst to generate labelled examples for building a feature-based pattern classifier. We evaluate our approach through a case study focused on detecting trawling activities in fishing vessel trajectories, demonstrating significant improvements in pattern recognition by leveraging domain knowledge and incorporating human reasoning and feedback. Our contribution is a novel framework that integrates human expertise and analytical reasoning with ML or AI techniques, advancing the field of data analytics.

This work was supported by EU in project CrexData (grant agreement no. 101092749) and by Federal Ministry of Education and Research of Germany and the state of North-Rhine Westphalia as part of the Lamarr Institute for Machine Learning and Artificial Intelligence (Lamarr22B).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrienko, N., Andrienko, G.: Visual Analytics of Vessel Movement, pp. 149–170. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-61852-0_5

  2. Andrienko, N., Andrienko, G., Adilova, L., Wrobel, S.: Visual analytics for human-centered machine learning. IEEE Comput. Graphics Appl. 42(1), 123–133 (2022). https://doi.org/10.1109/MCG.2021.3130314

    Article  MATH  Google Scholar 

  3. Andrienko, N., Andrienko, G., Fuchs, G., Slingsby, A., Turkay, C., Wrobel, S.: Visual analytics for data scientists. Springer (2020). https://doi.org/10.1007/978-3-030-56146-8

    Article  Google Scholar 

  4. Andrienko, N., Andrienko, G., Miksch, S., Schumann, H., Wrobel, S.: A theoretical model for pattern discovery in visual analytics. Visual Informatics 5(1), 23–42 (2021). https://doi.org/10.1016/j.visinf.2020.12.002

    Article  MATH  Google Scholar 

  5. Artikis, A., Sergot, M., Paliouras, G.: An event calculus for event recognition. IEEE Trans. Knowl. Data Eng. 27(4), 895–908 (2015). https://doi.org/10.1109/TKDE.2014.2356476

    Article  MATH  Google Scholar 

  6. Artikis, A., Zissis, D. (eds.): Guide to Maritime Informatics. Springer (2021).https://doi.org/10.1007/978-3-030-61852-0

  7. Beeram, S., Kuchibhotla, S.: Time series analysis on univariate and multivariate variables: a comprehensive survey, pp. 119–126 (10 2020). https://doi.org/10.1007/978-981-15-5397-4_13

  8. Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting flock patterns. Comput. Geom. 41(3), 111–125 (2008). https://doi.org/10.1016/j.comgeo.2007.10.003

    Article  MathSciNet  MATH  Google Scholar 

  9. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  10. Fix, E.: Discriminatory analysis: nonparametric discrimination, consistency properties. USAF school of Aviation Medicine (1951)

    Google Scholar 

  11. Höppner, F.: Time series abstraction methods - a survey. In: Informatik Bewegt: Informatik 2002 - 32. Jahrestagung Der Gesellschaft Für Informatik e.v. (GI), pp. 777–786. GI (2002)

    Google Scholar 

  12. Katzouris, N., Paliouras, G., Artikis, A.: Online learning probabilistic event calculus theories in answer set programming. Theory Pract. Logic Program. 23(2), 362–386 (2023). https://doi.org/10.1017/S1471068421000107

    Article  MathSciNet  MATH  Google Scholar 

  13. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964). https://doi.org/10.1007/BF02289565

    Article  MathSciNet  MATH  Google Scholar 

  14. Lubba, C.H., Sethi, S.S., Knaute, P., Schultz, S.R., Fulcher, B.D., Jones, N.S.: Catch22: canonical time-series characteristics: selected through highly comparative time-series analysis. Data Min. Knowl. Discov. 33(6), 1821–1852 (nov 2019). https://doi.org/10.1007/s10618-019-00647-x

  15. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(86), 2579–2605 (2008). http://jmlr.org/papers/v9/vandermaaten08a.html

  16. Mantenoglou, P., Artikis, A., Paliouras, G.: Online probabilistic interval-based event calculus. In: Giacomo, G.D., Catalá, A., Dilkina, B., Milano, M., Barro, S., Bugarín, A., Lang, J. (eds.) ECAI 2020 - 24th European Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 2624–2631. IOS Press (2020).https://doi.org/10.3233/FAIA200399

  17. Pitsikalis, M., Artikis, A.: Composite Maritime Event Recognition, pp. 233–260. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-61852-0_8

  18. Ray, C., Dréo, R., Camossi, E., Jousselme, A.L.: Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance (Feb 2018). https://doi.org/10.5281/zenodo.1167595

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Andrienko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andrienko, N., Andrienko, G., Artikis, A., Mantenoglou, P., Rinzivillo, S. (2025). Towards a Hybrid Human-Machine Discovery of Complex Movement Patterns. In: Meo, R., Silvestri, F. (eds) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2023. Communications in Computer and Information Science, vol 2134. Springer, Cham. https://doi.org/10.1007/978-3-031-74627-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74627-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74626-0

  • Online ISBN: 978-3-031-74627-7

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics