Skip to main content

DivNoise: A Data Collection for Source Identification on Diverse Camera Sensors

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2023)

Abstract

Identifying the acquisition source of media data is one of the most widely studied problems in multimedia forensics. A crucial aspect in this field is the availability of representative, diverse and up-to-date data corpora, so that the potential of existing and newly proposed techniques can be assessed in a reliable and reproducible manner. In this light, we present a novel dataset, named DivNoise, which encompasses both image and video data from a wide range of device cameras and collected in different environmental conditions. In particular, differently from existing databases, the dataset also includes data acquired from frontal cameras of mobile devices (smartphones and tablets) and from webcams, which are increasingly used tools to enable remote video communications in many application scenarios. The dataset is made publicly available to the research community, with the goal of supporting the development of novel source identification techniques. We perform an experimental evaluation on the DivNoise dataset through state-of-the-art algorithms, thus exposing preliminary yet intriguing empirical insights.

Alberto Casagrande, Alessio Belli: Both authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Two not peer-reviewed studies on the topic have been found, although not releasing the testing data [19, 21].

  2. 2.

    https://github.com/polimi-ispl/prnu-python.

  3. 3.

    http://dde.binghamton.edu/download/camera_fingerprint/.

References

  1. Akbari, Y., et al.: A new forensic video database for source smartphone identification: description and analysis. IEEE Access 10, 20080–20091 (2022)

    Google Scholar 

  2. Akbari, Y., Al-maadeed, S., Elharrouss, O., Khelifi, F., Lawgaly, A., Bouridane, A.: Digital forensic analysis for source video identification: a survey. Forensic Sci. Int. Digital Investig. 41, 301390 (2022)

    Article  Google Scholar 

  3. Bondi, L., Baroffio, L., Guera, D., Bestagini, P., Delp, E.J., Tubaro, S.: First steps toward camera model identification with convolutional neural networks. IEEE Signal Process. Lett. 24, 259–263 (2016)

    Article  ADS  MATH  Google Scholar 

  4. Bruno, A., Capasso, P., Cattaneo, G., Petrillo, U., Improta, R.: A novel image dataset for source camera identification and image based recognition systems. Multi. Tools Appl. 82, 1–17 (2022)

    Google Scholar 

  5. Caldelli, R., Amerini, I., Li, C.T.: PRNU-based image classification of origin social network with CNN. In: European Signal Processing Conference (EUSIPCO) (2018)

    Google Scholar 

  6. Cozzolino, D., Verdoliva, L.: Noiseprint: a CNN-based camera model fingerprint. IEEE Trans. Inf. Forensics Secur. 15, 144–159 (2020)

    Article  MATH  Google Scholar 

  7. Dang-Nguyen, D.T., Pasquini, C., Conotter, V., Boato, G.: RAISE: a raw images dataset for digital image forensics. In: ACM MMSys, pp. 219–224 (2015)

    Google Scholar 

  8. Galdi, C., Hartung, F., Dugelay, J.L.: SOCRatES: A database of realistic data for source camera recognition on smartphones. In: ICPRAM (2019)

    Google Scholar 

  9. Gloe, T., Böhme, R.: The ’Dresden Image Database’ for benchmarking digital image forensics. In: ACM Symposium on Applied Computing, pp. 1584–1590 (2010)

    Google Scholar 

  10. Goljan, M., Chen, M., Comesaña, P., Fridrich, J.: Effect of compression on sensor-fingerprint based camera identification. Electron. Imaging 28(8), 1–1 (2016)

    Article  MATH  Google Scholar 

  11. Goljan, M., Fridrich, J.J., Filler, T.: Large scale test of sensor fingerprint camera identification. In: Electronic Imaging (2009)

    Google Scholar 

  12. Hadwiger, B., Riess, C.: The Forchheim image database for camera identification in the wild. In: ICPR Workshops (2020)

    Google Scholar 

  13. Hosler, B.C., Zhao, X., Mayer, O., Chen, C., Shackleford, J.A., Stamm, M.C.: The video authentication and camera identification database: a new database for video forensics. IEEE Access 7, 76937–76948 (2019)

    Article  Google Scholar 

  14. Iuliani, M., Fontani, M., Piva, A.: A leak in PRNU based source identification-questioning fingerprint uniqueness. IEEE Access 9, 52455–52463 (2021)

    Article  MATH  Google Scholar 

  15. Kirchner, M.: Sensor fingerprints: camera identification and beyond, 65–88 (2022)

    Google Scholar 

  16. Kirchner, M., Johnson, C.: SPN-CNN: boosting sensor-based source camera attribution with deep learning. In: IEEE WIFS, pp. 1–6 (2019)

    Google Scholar 

  17. Lukas, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE TIFS 1(2), 205–214 (2006)

    MATH  Google Scholar 

  18. Mandelli, S., Cozzolino, D., Bestagini, P., Verdoliva, L., Tubaro, S.: CNN-based fast source device identification. IEEE Signal Process. Lett. 27, 1285–1289 (2020)

    Article  ADS  MATH  Google Scholar 

  19. Martí­n-Rodríguez, F., de Vicente, F.I.: PRNU based source camera identification for webcam and smartphone videos (2022), arXiv:2201.11737

  20. Shullani, D., Fontani, M., Iuliani, M., Alshaya, O., Piva, A.: VISION: a video and image dataset for source identification. EURASIP Inf. Secur. 2017, 15 (2017)

    Google Scholar 

  21. Stagnitta, F.: Analysis of webcam fingerprints for user authentication. Master’s thesis, Politecnico di Torino (2021)

    Google Scholar 

  22. Tian, H., Xiao, Y., Cao, G., Zhang, Y., Xu, Z., Zhao, Y.: Daxing smartphone identification dataset. IEEE Access 7, 101046–101053 (2019)

    Article  Google Scholar 

  23. Valsesia, D., Coluccia, G., Bianchi, T., Magli, E.: User authentication via PRNU-based physical unclonable functions. IEEE TIFS 12(8), 1941–1956 (2017)

    Google Scholar 

Download references

Acknowledgement

This research was funded by NORDIS, EU Horizon 2020 grant number 825469.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc-Tien Dang-Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casagrande, A., Belli, A., Pasquini, C., Dang-Nguyen, DT. (2025). DivNoise: A Data Collection for Source Identification on Diverse Camera Sensors. In: Meo, R., Silvestri, F. (eds) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2023. Communications in Computer and Information Science, vol 2134. Springer, Cham. https://doi.org/10.1007/978-3-031-74627-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74627-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74626-0

  • Online ISBN: 978-3-031-74627-7

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics