Skip to main content

A Practical Application of Artificial Intelligence Techniques for Legal Context Analysis

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2023)

Abstract

Legal management systems typically focus on specific tasks, pursuing organizational improvement, documentation management, and decision-making. This contribution explores automatic classification, taxonomic alignment, information extraction, and legal context analysis in a real case study. We propose a practical application that does not consider the different tasks separately but integrates them into an online platform with the objective of cataloguing, indexing and enabling semantic search by legal context. The first results demonstrate the ability to perform several tasks on the same legal domain, by addressing domain experts through a unified legal management system.

C. Bonfanti—This author contributed mainly to the analysis of Principles of Law.

M. Colombino, G. Iacobellis and L. J. M. Zaharia—This author contributed mainly to classification and alignment tasks.

R. Mignone and I. Spada—This author contributed mainly to the analysis of the legal context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Next Generation UPP - https://www.nextgenerationupp.unito.it/home.

  2. 2.

    https://pa.leggiditalia.it/#mode=home,__m=site.

  3. 3.

    https://pypi.org/project/scrapse/.

  4. 4.

    https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html.

  5. 5.

    https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html.

  6. 6.

    Edit Distance - https://www.nltk.org/api/nltk.metrics.distance.html.

  7. 7.

    EurLex - https://eur-lex.europa.eu/homepage.html accessed 23.06.2023.

  8. 8.

    Next Generation UPP - https://www.nextgenerationupp.unito.it/home.

References

  1. Bonfanti, C., et al.: A pipeline for data management, knowledge extraction and semantic analysis of unstructured legal judgments. In: Proceedings of Conference Ital-IA 2023 (2023). (In press). https://www.ital-ia2023.it/submission/41/paper

  2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Annual Conference Computational Learning Theory (1992)

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Cardellino, C., et al.: Ontology Population and Alignment for the Legal Domain: YAGO, Wikipedia and LKIF. In: International Workshop on the Semantic Web (2017)

    Google Scholar 

  5. Chen, H., Lei, W., Chen, J., Wei, L., Ding, J.: A comparative study of automated legal text classification using random forests and deep learning. Inf. Process. Manag. 59, 102798 (2022)

    Article  MATH  Google Scholar 

  6. Clerkin, P., Cunningham, P., Hayes, C.: Ontology discovery for the semantic web using hierarchical clustering. Technical report, Trinity College Dublin, Department of Computer Science (2002)

    Google Scholar 

  7. Colombino, M., et al.: Organizing the unorganized: a novel approach for transferring a taxonomy of labels into flat-labeled document collections. In: Proceedings of ASAIL 2023, 6th Workshop on Automated Semantic Analysis of Information in Legal Text (2023). (In press). https://drive.google.com/file/d/1vUbmPY073rqgSqCizB9UT80JV9gjfnqa/view?usp=drive_link

  8. Fernández, S., Velasco, J.R., López-Carmona, M.A.: A fuzzy rule-based system for ontology mapping. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.) PRIMA 2009. LNCS (LNAI), vol. 5925, pp. 500–507. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11161-7_35

    Chapter  MATH  Google Scholar 

  9. Giabelli, A., Malandri, L., Mercorio, F., Mezzanzanica, M.: Weta: automatic taxonomy alignment via word embeddings. Comput. Ind. 138, 103626 (2022)

    Article  Google Scholar 

  10. Governatori, G., et al.: Thirty years of artificial intelligence and law: the first decade. Artif. Intell. Law 30, 481–519 (2022)

    Article  MATH  Google Scholar 

  11. Guastini, R.: Principi di diritto e discrezionalità giudiziale. Diritto pubblico 3, 641–660 (1998)

    Google Scholar 

  12. He, Y., Chen, J., Antonyrajah, D., Horrocks, I.: Bertmap: a bert-based ontology alignment system. In: AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  13. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. ArXiv arxiv:1405.4053 (2014)

  14. Leith, P.: The rise and fall of the legal expert system previously published in leith p., “the rise and fall of the legal expert system. Eur. J. Law Technol. 1(1) (2010). view all notes. Int. Rev. Law Comput. Technol. 30, 94–106 (2016). https://doi.org/10.1080/13600869.2016.1232465

  15. Licari, D., Comandé, G.: ITALIAN-LEGAL-BERT: a pre-trained transformer language model for Italian Law. In: Symeonidou et al. (eds.) EKAW, vol. 3256 of CEUR Workshop Proceedings, Bozen-Bolzano, Italy, September 2022. CEUR (2022). https://ceur-ws.org/Vol-3256/#km4law3

  16. Listenmaa, I., Morris, J., Ang, A., Hanafiah, M., Cheong, R.: An nlg pipeline for a legal expert system: a work in progress. ArXiv arxiv:2107.02421 (2021)

  17. Amantea, I.A., Molinari, M., Bonfanti, C.: Principles of law: approaching a functional extraction. In: Proceedings of AI4LEGS (2023). (In press)

    Google Scholar 

  18. Mignone, R., et al.: Augmented reading and similar case matching: from legal domain experts’ modus operandi to a computational pipeline. In: Proceedings of KM4LAW 2023, 2nd International Workshop on Knowledge Management and Process Mining for Law (2023). (In press)

    Google Scholar 

  19. Nicholson, J.M., et al.: scite: a smart citation index that displays the context of citations and classifies their intent using deep learning. bioRxiv (2021)

    Google Scholar 

  20. Obayi, A., Anichebe, G., Izuchukwu, U., Ezema, M., Emeka, N., Agbo, J.: Advancement in e recruitment towards expert recruitment system (ers) (2020)

    Google Scholar 

  21. Raghav, K., Reddy, K., Reddy, V.A.: Analyzing the extraction of relevant legal judgments using paragraph-level and citation information (2016)

    Google Scholar 

  22. Van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworth - Heinemann (1979). 0408709294

    Google Scholar 

  23. Robaldo, L., Villata, S., Wyner, A.Z., Grabmair, M.: Introduction for artificial intelligence and law: special issue “natural language processing for legal texts". Artif. Intell. Law 27, 113–115 (2019)

    Article  Google Scholar 

  24. Sartor, G., et al.: Thirty years of artificial intelligence and law: the second decade. Artif. Intell. Law 30, 521–557 (2022)

    Article  MATH  Google Scholar 

  25. Sheik, R., Nirmala, S.J.: Deep learning techniques for legal text summarization. In: 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), pp. 1–5 (2021)

    Google Scholar 

  26. Sovrano, F., Palmirani, M., Vitali, F.: Legal knowledge extraction for knowledge graph based question-answering. In: International Conference on Legal Knowledge and Information Systems (2020)

    Google Scholar 

  27. Sulis, E., et al.: Exploiting co-occurrence networks for classification of implicit inter-relationships in legal texts. Inf. Syst. 106, 101821 (2022). https://doi.org/10.1016/j.is.2021.101821

    Article  MATH  Google Scholar 

  28. Ting, K.M.: Precision and Recall, pp. 781–781. Springer US, Boston (2010). ISBN 978-0-387-30164-8. https://doi.org/10.1007/978-0-387-30164-8_652

  29. de V. Silveira, R., Fernandes, C.G., Neto, J.A.M., Furtado, V., Filho, J.E.P.: Topic modelling of legal documents via legal-bert1 (2021)

    Google Scholar 

  30. Villata, S., et al.: Thirty years of artificial intelligence and law: the third decade. Artif. Intell. Law 30, 561–591 (2022)

    Article  MATH  Google Scholar 

  31. Wagh, R., Anand, D.: Application of citation network analysis for improved similarity index estimation of legal case documents: a study. In: 2017 IEEE International Conference on Current Trends in Advanced Computing (ICCTAC), pp. 1–5 (2017). https://doi.org/10.1109/ICCTAC.2017.8249996

  32. Zhang, Y., et al.: Ontology matching with word embeddings. In: China National Conference on Chinese Computational Linguistics (2014)

    Google Scholar 

Download references

Acknowledgments

The research work has been funded in Next Generation UPP project supported by the European Union, National Operational Program Governance and Institutional Capacity 2014–2020, European Social Fund and European Regional Development Fund. The Next Generation UPP project is part of the “Unitary project for the dissemination of the Office for Trial and the implementation of innovative operating models in the judicial offices for the disposal of the backlog", promoted by the Italian Ministry of Justice and implemented in synergy with the interventions envisaged by the National Recovery and Resilience Plan (NRRP) in support to the justice reform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Angela Amantea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amantea, I.A. et al. (2025). A Practical Application of Artificial Intelligence Techniques for Legal Context Analysis. In: Meo, R., Silvestri, F. (eds) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2023. Communications in Computer and Information Science, vol 2133. Springer, Cham. https://doi.org/10.1007/978-3-031-74630-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74630-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74629-1

  • Online ISBN: 978-3-031-74630-7

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics