Skip to main content

Neuro-symbolic Artificial Intelligence for Patient Monitoring

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2023)

Abstract

In this paper we argue that Neuro-Symbolic AI (NeSy-AI) should be applied for patient monitoring. In this context, we introduce patient monitoring as a special case of Human Activity Recognition and derive concrete requirements for this application area. We then present a process architecture and discuss why NeSy-AI should be applied for patient monitoring. To further support our argumentation, we show how NeSy-AI can help to overcome certain technical challenges that arise from this application area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/vac-mmis/Neuro-SymbolicArtificialIntelligenceforPatientMonitoring

References

  1. Bennetot, A., Laurent, J.L., Chatila, R., Díaz-Rodríguez, N.: Towards explainable neural-symbolic visual reasoning.(2019). In: IJCAI19 Neural-Symbolic Learning and Reasoning Workshop (2019). https://sites.google.com/view/nesy2019/home

  2. Besold, T.R., et al.: Neural-symbolic learning and reasoning: a survey and interpretation. In: Neuro-Symbolic Artificial Intelligence: The State of the Art, pp. 1–51. IOS Press (2021)

    Google Scholar 

  3. Bollacker, K., Díaz-Rodríguez, N., Li, X.: Extending knowledge graphs with subjective influence networks for personalized fashion. In: Portmann, E., Tabacchi, M.E., Seising, R., Habenstein, A. (eds.) Designing Cognitive Cities, pp. 203–233. Studies in Systems, Decision and Control, Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-00317-3_9

  4. Confalonieri, R., Weyde, T., Besold, T.R., Moscoso del Prado Martín, F.: Using ontologies to enhance human understandability of global post-hoc explanations of black-box models. Artif. Intell. 296, 103471 (2021).https://doi.org/10.1016/j.artint.2021.103471. https://www.sciencedirect.com/science/article/pii/S0004370221000229

  5. Daniels, Z.A., Frank, L.D., Menart, C., Raymer, M., Hitzler, P.: A framework for explainable deep neural models using external knowledge graphs. In: Pham, T., Solomon, L., Rainey, K. (eds.) Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications II, pp. 73. SPIE, Online Only, United States, April 2020. https://doi.org/10.1117/12.2558083

  6. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: a probabilistic prolog and its application in link discovery. In: IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 2462–2467. IJCAI-INT JOINT CONF ARTIF INTELL (2007)

    Google Scholar 

  7. De Raedt, L., Manhaeve, R., Dumancic, S., Demeester, T., Kimmig, A.: Neuro-symbolic= neural+ logical+ probabilistic. In: NeSy’19@ IJCAI, the 14th International Workshop on Neural-Symbolic Learning and Reasoning (2019)

    Google Scholar 

  8. Donadello, I., Serafini, L., d’Avila Garcez, A.: Logic tensor networks for semantic image interpretation. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 1596–1602. International Joint Conferences on Artificial Intelligence Organization, Melbourne, Australia, August 2017. https://doi.org/10.24963/ijcai.2017/221

  9. Díaz-Rodríguez, N., Lamas, A., Sanchez, J., Franchi, G., Donadello, I., Tabik, S., Filliat, D., Cruz, P., Montes, R., Herrera, F.: EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: The MonuMAI cultural heritage use case. Information Fusion 79, 58–83 (Mar 2022) https://doi.org/10.1016/j.inffus.2021.09.022, https://linkinghub.elsevier.com/retrieve/pii/S1566253521001986

  10. Fierens, D., Broeck, G.V.d., Renkens, J., Shterionov, D., Gutmann, B., Thon, I., Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic programs using weighted Boolean formulas. Theory and Practice of Logic Programming 15(3), 358–401 (2015). https://doi.org/10.1017/S1471068414000076, http://arxiv.org/abs/1304.6810, arXiv:1304.6810 [cs]

  11. Hitzler, P., Eberhart, A., Ebrahimi, M., Sarker, M.K., Zhou, L.: Neuro-symbolic approaches in artificial intelligence. National Sci. Rev. 9(6), nwac035 (2022). https://doi.org/10.1093/nsr/nwac035

  12. Hussain, Z., Sheng, M., Zhang, W.E.: Different approaches for human activity recognition: a survey. J. Network Comput. Appl. 167, 102738 (2020). https://doi.org/10.1016/j.jnca.2020.102738. http://arxiv.org/abs/1906.05074, arXiv:1906.05074 [cs]

  13. Kamruzzaman Sarker, M., Zhou, L., Eberhart, A., Hitzler, P.: Neuro-symbolic artificial intelligence: Current trends. arXiv e-prints pp. arXiv–2105 (2021)

    Google Scholar 

  14. Krüger, F., Nyolt, M., Yordanova, K., Hein, A., Kirste, T.: Computational State Space Models for Activity and Intention Recognition. A Feasibility Study. PLOS ONE 9(11), e109381 (2014). https://doi.org/10.1371/journal.pone.0109381

    Article  PubMed  MATH  Google Scholar 

  15. Manhaeve, R., Dumančič, S., Kimmig, A., Demeester, T., De Raedt, L.: DeepProbLog: Neural Probabilistic Logic Programming. In: Advances in Neural Information Processing Systems. vol. 31. Curran Associates, Inc. (2018). https://papers.nips.cc/paper/2018/hash/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html

  16. Yang, J., Lee, J., Choi, J.: Activity recognition based on rfid object usage for smart mobile devices. J. Comput. Sci. Technol. 26(2), 239–246 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

We want to thank GWA Hygiene for providing us with the sensors as well as the additional infrastructure which is necessary for a project like this.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Fenske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fenske, O., Bader, S., Kirste, T. (2025). Neuro-symbolic Artificial Intelligence for Patient Monitoring. In: Meo, R., Silvestri, F. (eds) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2023. Communications in Computer and Information Science, vol 2136. Springer, Cham. https://doi.org/10.1007/978-3-031-74640-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74640-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74639-0

  • Online ISBN: 978-3-031-74640-6

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics