Skip to main content

Synthesizing Diabetic Foot Ulcer Images with Diffusion Model

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2023)

Abstract

Diabetic Foot Ulcer (DFU) is a serious skin wound requiring specialized care. However, real DFU datasets are limited, hindering clinical training and research activities. In recent years, generative adversarial networks and diffusion models have emerged as powerful tools for generating synthetic images with remarkable realism and diversity in many applications. This paper explores the potential of diffusion models for synthesizing DFU images and evaluates their authenticity through expert clinician assessments (WoundVista: http://bit.ly/WoundVista). Additionally, evaluation metrics such as Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) are examined to assess the quality of the synthetic DFU images. A dataset of 2,000 DFU images is used for training the diffusion model, and the synthetic images are generated by applying diffusion processes. The results indicate that the diffusion model successfully synthesizes visually indistinguishable DFU images. 70% of the time, clinicians marked synthetic DFU images as real DFUs. However, clinicians demonstrate higher unanimous confidence in rating real images than synthetic ones. The study also reveals that FID and KID metrics do not significantly align with clinicians’ assessments, suggesting alternative evaluation approaches are needed. The findings highlight the potential of diffusion models for generating synthetic DFU images and their impact on medical training programs and research in wound detection and classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. López-Valverde, M.E., Aragón-Sánchez, J., López-de-Andrés, A., et al.: Perioperative and long-term all-cause mortality in patients with diabetes who underwent a lower extremity amputation. Diabetes Res. Clin. Pract. 141, 175–180 (2018). https://doi.org/10.1016/j.diabres.2018.05.004

    Article  PubMed  Google Scholar 

  2. Lin, C.-W.C.-H., Hsu, B.R.-S., Tsai, J.-S., et al.: Effect of limb preservation status and body mass index on the survival of patients with limb-threatening diabetic foot ulcers. J. Diabetes Complications 31, 180–185 (2017). https://doi.org/10.1016/j.jdiacomp.2016.09.011

    Article  PubMed  Google Scholar 

  3. Basiri, R., Haverstock, B.D., Petrasek, P.F., Manji, K.: Reduction in diabetes-related major amputation rates after implementation of a multidisciplinary model: an evaluation in Alberta, Canada. J. Am. Podiatr. Med. Assoc. 111(4), Article_1 (2019) https://doi.org/10.7547/19-137

  4. Zhang, P., Lu, J., Jing, Y., et al.: Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. Ann. Med. 49, 106–116 (2017). https://doi.org/10.1080/07853890.2016.1231932

    Article  PubMed  MATH  Google Scholar 

  5. Armstrong, D.G., Lavery, L.A.: Diabetic foot ulcers: prevention, diagnosis and classification. Am. Fam. Physician 57, 1325–1332 (1998)

    PubMed  MATH  Google Scholar 

  6. Basiri, R., Popovic, M.R., Khan, S.S.: Domain-specific deep learning feature extractor for diabetic foot ulcer detection. In: IEEE International Conference on Data Mining Workshops, ICDMW 2022-November:243–247 (2022). https://doi.org/10.1109/ICDMW58026.2022.00041

  7. Chen, Y., Yang, X.H., Wei, Z., et al.: Generative adversarial networks in medical image augmentation: a review. Comput. Biol. Med. 144, 105382 (2022). https://doi.org/10.1016/J.COMPBIOMED.2022.105382

    Article  PubMed  MATH  Google Scholar 

  8. Croitoru, F.-A., Hondru, V., Ionescu, R.T., Shah, M.: Diffusion Models in Vision: A Survey (2022).https://doi.org/10.1109/TPAMI.2023.3261988

  9. Karras, T., Laine, S., Aila, T.: A Style-Based Generator Architecture for Generative Adversarial Networks, pp. 4401–4410 (2019)

    Google Scholar 

  10. Rombach, R., Blattmann, A., Lorenz, D., et al.: High-Resolution Image Synthesis With Latent Diffusion Models, pp. 10684–10695 (2022)

    Google Scholar 

  11. Packhäuser, K., Folle, L., Thamm, F., Maier, A.: Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification Systems (2022)

    Google Scholar 

  12. Pinaya, W.H.L., Tudosiu, P.D., Dafflon, J., et al.: Brain Imaging Generation with Latent Diffusion Models. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 13609 LNCS:117–126 (2022). https://doi.org/10.1007/978-3-031-18576-2_12/COVER

  13. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Image Anal. 58, 101552 (2019). https://doi.org/10.1016/J.MEDIA.2019.101552

    Article  PubMed  MATH  Google Scholar 

  14. Cassidy, B., Reeves, N.D., Joseph, P., et al.: DFUC2020: Analysis Towards Diabetic Foot Ulcer Detection

    Google Scholar 

  15. Goyal, M., Reeves, N.D., Rajbhandari, S., Yap, M.H.: Robust methods for real-time diabetic foot ulcer detection and localization on mobile devices. IEEE J. Biomed. Health Inform. 23, 1730–1741 (2019). https://doi.org/10.1109/JBHI.2018.2868656

    Article  PubMed  Google Scholar 

  16. Carlini, N., Hayes, J., Nasr, M., et al.: Extracting Training Data from Diffusion Models (2023)

    Google Scholar 

  17. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J Big Data 6, 1–48 (2019). https://doi.org/10.1186/S40537-019-0197-0/FIGURES/33

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Basiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basiri, R., Manji, K., Francois, H., Poonja, A., Popovic, M.R., Khan, S.S. (2025). Synthesizing Diabetic Foot Ulcer Images with Diffusion Model. In: Meo, R., Silvestri, F. (eds) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2023. Communications in Computer and Information Science, vol 2136. Springer, Cham. https://doi.org/10.1007/978-3-031-74640-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74640-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74639-0

  • Online ISBN: 978-3-031-74640-6

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics