Skip to main content

Engaging Older Adults at Meal-Time Through AI-Empowered Socially Assistive Robots

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2023)

Abstract

Proper nutrition is important for the well-being of older adults. Inadequate or wrong food consumption during meals can lead to health issues. In this paper, we present an application that uses a humanoid Socially Assistive Robot, Alpha Mini in this case, in order to monitor the behavior and engage adults during meal-time, enhancing their experience. The robot works in a tight coupling with Artificial intelligence technologies based on Deep learning for the tasks of activity recognition and food detection and recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/MVIG-SJTU/AlphAction/blob/master/DATA.md.

References

  1. Edamam[api]. https://developer.edamam.com/edamam-docs-recipe-api

  2. A review and categorization of techniques on device-free human activity recognition. J. Netw. Comput. Appli. 167, 102738 (2020). https://doi.org/10.1016/j.jnca.2020.102738

  3. Chen, C.C.H., Schilling, L.S., Lyder, C.: A concept analysis of malnutrition in the elderly. J. Adv. Nurs. 36(1), 131–142 (2001). https://doi.org/10.1046/j.1365-2648.2001.01950.x

    Article  PubMed  MATH  Google Scholar 

  4. Chen, K., et al.: Mmdetection: Open mmlab detection toolbox and benchmark. ArXiv abs/ arXiv: 1906.07155 (2019)

  5. Chen, Y., Zhang, Z., Yuan, C., Li, B., Deng, Y., Hu, W.: Channel-wise topology refinement graph convolution for skeleton-based action recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13359–13368 (2021)

    Google Scholar 

  6. Dang, L.M., Min, K., Wang, H., Piran, M.J., Lee, C.H., Moon, H.: Sensor-based and vision-based human activity recognition: A comprehensive survey. Pattern Recogn. 108, 107561 (2020)

    Article  Google Scholar 

  7. DeCarolis, B., Carofiglio, V., Grimandli, I., Macchiarulo, N., Palestra, G., Pino, O.: Using the pepper robot in cognitive stimulation therapy for people with mild cognitive impairment and mild dementia (2020)

    Google Scholar 

  8. Di Napoli, C., Ercolano, G., Rossi, S.: Personalized home-care support for the elderly: a field experience with a social robot at home. User Model. User-Adap. Inter. 33(2), 405–440 (2023)

    Article  MATH  Google Scholar 

  9. Dwyer, B., Nelson, J., Solawetz, J., et al.: Roboflow (version 1.0)[software] (2022)

    Google Scholar 

  10. Fasola, J., Matarić, M.J.: A socially assistive robot exercise coach for the elderly 2(2), 3–32 (2013). https://doi.org/10.5898/JHRI.2.2.Fasola

  11. Ghayvat, H., et al.: Smart aging system: Uncovering the hidden wellness parameter for well-being monitoring and anomaly detection. Sensors 19(4) (2019). https://doi.org/10.3390/s19040766

  12. Gross, H., et al.: Progress in developing a socially assistive mobile home robot companion for the elderly with mild cognitive impairment. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2011, San Francisco, CA, USA, 25-30 September 2011, pp. 2430–2437 (2011)

    Google Scholar 

  13. Jocher, G., Chaurasia, A., Qiu, J.: Yolov8. YOLO by Ultralytics. https://github.com/ultralytics/ultralytics (2023). Accessed 30 February 2023 (2020)

  14. Liu, C., Li, X., Li, Q., Xue, Y., Liu, H., Gao, Y.: Robot recognizing humans intention and interacting with humans based on a multi-task model combining st-gcn-lstm model and yolo model. Neurocomputing 430, 174–184 (2021). https://doi.org/10.1016/j.neucom.2020.10.016

    Article  MATH  Google Scholar 

  15. Lorenzo-López, L., Maseda, A., de Labra, C., Regueiro-Folgueira, L., Rodríguez-Villamil, J.L., Millán-Calenti, J.C.: Nutritional determinants of frailty in older adults: a systematic review. BMC Geriatrics 17(1), 108 (2017). https://doi.org/10.1186/s12877-017-0496-2

  16. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: Ntu rgb+d: a large scale dataset for 3d human activity analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1010–1019 (2016)

    Google Scholar 

  17. Ultralytics: YOLOv5: You only look once v5 (2020). https://github.com/ultralytics/yolov5

  18. Yan, S., Xiong, Y., Wang, J., Lin, D.: Mmskeleton (2019). https://github.com/open-mmlab/mmskeleton

  19. Yu, R., et al.: Use of a therapeutic, socially assistive pet robot (paro) in improving mood and stimulating social interaction and communication for people with dementia: Study protocol for a randomized controlled trial. JMIR Res. Protoc. 4(2), e45 (2015). https://doi.org/10.2196/resprot.4189

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This publication was produced with the co-funding European Union - Next Generation EU, in the context of The National Recovery and Resilience Plan, Investment Partenariato Esteso PE8 “Conseguenze e sfide dell’invecchiamento”, Project Age-It (Ageing Well in an Ageing Society), CUP: B83C22004800006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Loglisci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Carolis, B., Loglisci, C., Macchiarulo, N., Palestra, G. (2025). Engaging Older Adults at Meal-Time Through AI-Empowered Socially Assistive Robots. In: Meo, R., Silvestri, F. (eds) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2023. Communications in Computer and Information Science, vol 2136. Springer, Cham. https://doi.org/10.1007/978-3-031-74640-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74640-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74639-0

  • Online ISBN: 978-3-031-74640-6

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics