Skip to main content

Unveiling Driver Modules in Lung Cancer: A Clustering-Based Gene-Gene Interaction Network Analysis

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2023)

Abstract

Lung cancer, which is the leading cause of cancer-related death worldwide and is characterized by genetic changes and heterogeneity, presents a significant treatment challenge. Existing approaches utilizing Machine Learning (ML) techniques for identifying driver modules lack specificity, particularly for lung cancer. This study addresses this limitation by proposing a novel method that combines gene-gene interaction network construction with ML-based clustering to identify lung cancer-specific driver modules. The methodology involves mapping biological processes to genes and constructing a weighted gene-gene interaction network to identify correlations within gene clusters. A clustering algorithm is then applied to identify potential cancer-driver modules, focusing on biologically relevant modules that contribute to lung cancer development. The results highlight the effectiveness and robustness of the clustering approach, identifying 110 unique clusters ranging in size from 4 to 10. These clusters surpass evaluation requirements and demonstrate significant relevance to critical cancer-related pathways. The identified driver modules hold promise for influencing future approaches to lung cancer diagnosis, prognosis, and treatment. This research expands our understanding of lung cancer and sets the stage for further investigations and potential clinical advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011)

    Article  PubMed  MATH  Google Scholar 

  2. Noone, A.M., Cronin, K.A., Altekruse, S.F., Howlader, N., et al.: Cancer incidence and survival trends by subtype using data from the surveillance epidemiology and end results program, 1992–2013. Cancer Epidemiol. Biomark. Prev. 26(4), 632–41 (2017)

    Article  Google Scholar 

  3. Ridge, C.A., McErlean, A.M., Ginsberg, M.S.: Seminars in Interventional Radiology, pp. 093–098. Thieme Medical Publishers (2013)

    Google Scholar 

  4. Thun, M.J., Hannan, L.M., Adams-Campbell, L.L., Boffetta, P., et al.: Lung cancer occurrence in never-smokers: an analysis of 13 cohorts and 22 cancer registry studies. PLoS Med. 5(9), e185 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cruz, C.S., Tanoue, L.T., Matthay, R.A.: Lung cancer: epidemiology, etiology, and prevention. Clin. Chest Med. 32(4), 605–44 (2011)

    Article  MATH  Google Scholar 

  6. Pikor, L.A., Ramnarine, V.R., Lam, S., Lam, W.L.: Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer 82(2), 179–89 (2013)

    Article  PubMed  MATH  Google Scholar 

  7. Chen, Z., Fillmore, C.M., Hammerman, P.S., Kim, C.F., Wong, K.K.: Non-small-cell lung cancers: a heterogeneous set of diseases. Nat. Rev. Cancer 14(8), 535–46 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lung Cancer Modules Repository. https://github.com/Golnazthr/LungCancerModules

  9. Cancer Genome Atlas (TCGA) Research Network: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216), 1061 (2008)

    Google Scholar 

  10. Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., Jr., Kinzler, K.W.: Cancer genome landscapes. Science 339(6127), 1546–1558 (2013)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Taheri, G., Habibi, M.: Using unsupervised learning algorithms to identify essential genes associated with SARS-CoV-2 as potential therapeutic targets for COVID-19. bioRxiv 5(1) (2022)

    Google Scholar 

  12. Taheri, G., Habibi, M.: Identification of essential genes associated with SARS-CoV-2 infection as potential drug target candidates with machine learning algorithms. Sci. Rep. 13(1), 15141 (2023)

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  13. Dopazo, J., Erten, C.: Graph-theoretical comparison of normal and tumor networks in identifying BRCA genes. BMC Syst. Biol. 1(11), 1–7 (2017)

    MATH  Google Scholar 

  14. Yang, H., Wei, Q., Zhong, X., Yang, H., Li, B.: Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework. Bioinformatics 33(4), 483–90 (2017)

    Article  PubMed  MATH  Google Scholar 

  15. Vanunu, O., Magger, O., Ruppin, E., Shlomi, T., Sharan, R.: Associating genes and protein complexes with disease via network propagation. PLoS Comput. Biol. 6(1), e1000641 (2010)

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  16. Deng, Y., Luo, S., Deng, C., Luo, T., Yin, W., Zhang, H., et al.: Identifying mutual exclusivity across cancer genomes: computational approaches to discover genetic interaction and reveal tumor vulnerability. Brief. Bioinform. 20(1), 254–266 (2019)

    Article  PubMed  MATH  Google Scholar 

  17. Zhang, J., Zhang, S.: The discovery of mutated driver pathways in cancer: models and algorithms. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(3), 988–998 (2018)

    Article  MATH  Google Scholar 

  18. Ciriello, G., Cerami, E., Sander, C., Schultz, N.: Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22(2), 398–406 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cho, A., Shim, J.E., Kim, E., Supek, F., Lehner, B., Lee, I.: MUFFINN: cancer gene discovery via network analysis of somatic mutation data. Genome Biol. 17(1), 1–6 (2016)

    Article  MATH  Google Scholar 

  20. Dimitrakopoulos, C.M., Beerenwinkel, N.: MUFFINN: computational approaches for the identification of cancer genes and pathways. Syst. Biol. Med. 9(1), e1364 (2017)

    MATH  Google Scholar 

  21. Zhang, W., Wang, S.L., Liu, Y.: Identification of cancer driver modules based on graph clustering from multiomics data. J. Comput. Biol. 28(10), 1007–1020 (2021)

    Article  PubMed  MATH  Google Scholar 

  22. Habibi, M., Taheri, G.: Topological network based drug repurposing for Coronavirus 2019. PLoS ONE 16(7), e0255270 (2021)

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  23. Habibi, M., Taheri, G.: A new machine learning method for cancer mutation analysis. PLoS Comput. Biol. 18(10), e1010332 (2022)

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  24. Traag, V.A., Waltman, L., Van Eck, N.J.: From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9(1), 5233 (2019)

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  25. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. In: Proceedings of the National Academy of Sciences, pp. 12123–12128 (2010)

    Google Scholar 

  26. Taheri, G., Habibi, M., Wong, L., Eslahchi, C.: Disruption of protein complexes. J. Bioinform. Comput. Biol. 11(03), 1341008 (2013)

    Article  PubMed  MATH  Google Scholar 

  27. Ahmad, A.: Breast Cancer Metastasis and Drug Resistance: Challenges and Progress. Springer (2019)

    Google Scholar 

  28. Taheri, G., Habibi, M.: A novel machine learning method for mutational analysis to identifying driver genes in breast cancer. bioRxiv 11(01), 1341008 (2022)

    Google Scholar 

  29. Stabile, L.P., Siegfried, J.M.: Estrogen receptor pathways in lung cancer. Curr. Oncol. Rep. 6(01), 259–267 (2004)

    Article  PubMed  MATH  Google Scholar 

  30. Taheri, G., Habibi, M.: Comprehensive analysis of pathways in Coronavirus 2019 (COVID-19) using an unsupervised machine learning method. Appl. Soft Comput. 128, 109510 (2022)

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  31. Ekman, S., Wynes, M.W., Hirsch, F.R.: The mTOR pathway in lung cancer and implications for therapy and biomarker analysis. J. Thorac. Oncol. 7(06), 947–953 (2012)

    Article  PubMed  MATH  Google Scholar 

  32. Hao, X.L., Han, F., Zhang, N., Chen, H.Q., et al.: TC2N, a novel oncogene, accelerates tumor progression by suppressing p53 signaling pathway in lung cancer. Cell Death Differ. 26(7), 1235–1250 (2019)

    Article  PubMed  Google Scholar 

  33. Frezzetti, D., Gallo, M., Maiello, M.R., D’Alessio, A., Esposito, C., et al.: EGF as a potential target in lung cancer. Expert Opin. Ther. Targets 21(10), 959–66 (2017)

    Article  PubMed  Google Scholar 

  34. Stewart, D.J.: Wnt signaling pathway in non-small cell lung cancer. J. Natl. Cancer Inst. 106(1), 1–11 (2014)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Golnaz Taheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taheri, G., Szalai, M., Habibi, M., Papapetrou, P. (2025). Unveiling Driver Modules in Lung Cancer: A Clustering-Based Gene-Gene Interaction Network Analysis. In: Meo, R., Silvestri, F. (eds) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2023. Communications in Computer and Information Science, vol 2136. Springer, Cham. https://doi.org/10.1007/978-3-031-74640-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74640-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74639-0

  • Online ISBN: 978-3-031-74640-6

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics