Skip to main content

Comparing Deep RL and Traditional Financial Portfolio Methods

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2023)

Abstract

Portfolio allocation aims to optimize the risk/return ratio in investment management. Traditional methods based on modern portfolio theory have been widely used for this purpose. However, the emergence of deep reinforcement learning (DRL) offers an alternative approach. This article conducts a comprehensive comparative analysis of traditional portfolio allocation methods and DRL, examining their principles, methodologies, and performance in maximizing risk-return profiles. It demonstrates that a basic version of DRL converges to traditional methods, while a myopic agent driven by immediate rewards represents the dynamic version of traditional methods. Experimental results indicate some improvement of DRL over traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aboussalah, A.M.: What is the value of the cross-sectional approach to deep reinforcement learning? SSRN (2020)

    Google Scholar 

  2. Benhamou, E., Saltiel, D., Ohana, J.J., Atif, J.: Detecting and adapting to crisis pattern with context based deep reinforcement learning. In: ICPR 2021 Proceedings (2021)

    Google Scholar 

  3. Benhamou, E., Saltiel, D., Ohana, J.J., Atif, J., Laraki, R.: Deep reinforcement learning (DRL) for portfolio allocation. In: Dong, Y., Ifrim, G., Mladenić, D., Saunders, C., Van Hoecke, S. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12461, pp. 527–531. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67670-4_32

    Chapter  Google Scholar 

  4. Benhamou, E., Saltiel, D., Ungari, S., Mukhopadhyay, A.: Aamdrl: augmented asset management with deep reinforcement learning. arXiv (2020)

    Google Scholar 

  5. Cong, L.W., Tang, K., Wang, J., Zhang, Y.: Alphaportfolio: direct construction through deep reinforcement learning and interpretable AI. SSRN Electron. J. 10, 2139 (2021)

    MATH  Google Scholar 

  6. Du, X., Zhai, J., Lv, K.: Algorithm trading using Q-learning and recurrent reinforcement learning. Positions 1, 1–7 (2016)

    MATH  Google Scholar 

  7. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice, vol. 7, 3rd edn. OTexts, Melbourne (2018)

    MATH  Google Scholar 

  8. Liang, Z., Chen, H., Zhu, J., Jiang, K., Li, Y.: Adversarial deep reinforcement learning in portfolio management. arXiv preprint (2018)

    Google Scholar 

  9. Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)

    MATH  Google Scholar 

  10. Pardo, R.E.: Design, Testing, and Optimization of Trading Systems, p. 17. Wiley, Trader’s Advantage (1992)

    Google Scholar 

  11. Park, H., Sim, M.K., Choi, D.G.: An intelligent financial portfolio trading strategy using deep Q-learning. Expert Syst. Appl. 158, 113573 (2020)

    Article  MATH  Google Scholar 

  12. Pendharkar, P.C., Cusatis, P.: Trading financial indices with reinforcement learning agents. Expert Syst. Appl. 103, 1–13 (2018)

    Article  MATH  Google Scholar 

  13. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. The MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  14. Xiong, Z., Liu, X.Y., Zhong, S., Yang, H., Walid, A.: Practical deep reinforcement learning approach for stock trading. arXiv preprint arXiv:1811.07522 (2018)

  15. Yu, P., Lee, J.S., Kulyatin, I., Shi, Z., Dasgupta, S.: Model-based deep reinforcement learning for dynamic portfolio optimization. arXiv preprint (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Benhamou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 157 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benhamou, E., Ohana, JJ., Guez, B., Saltiel, D., Laraki, R., Atif, J. (2025). Comparing Deep RL and Traditional Financial Portfolio Methods. In: Meo, R., Silvestri, F. (eds) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2023. Communications in Computer and Information Science, vol 2137. Springer, Cham. https://doi.org/10.1007/978-3-031-74643-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74643-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74642-0

  • Online ISBN: 978-3-031-74643-7

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics