Skip to main content

Detection of Municipal Heat Plan Documents Using Semantic Recognition Methods

  • Conference paper
  • First Online:
Energy Informatics (EI.A 2024)

Abstract

Municipalities in Germany are required by law to prepare a report on municipal heat planning by June 2028 at the latest, depending on their population. Due to the federal structure of Germany in some federal states there exist different regulations and due dates. Most of the municipalities with already completed municipal heat plans have published them on their respective websites. Neither the heat plans themselves nor the location of publishing follow generic templates and are therefore presented in different formats, lengths and places. In order to gain an overview of these heat plans in an effort to coordinate heat planning across municipalities in Germany, a data set referring to the available heat plans shall be created and regularly updated.

The first step is to use an internet search engine and a web crawler to identify candidate documents for a municipality’s heat plan. In a second step, the results are checked for plausibility, i.e. it is checked whether the candidate documents are actually municipal heat plans and whether they are assigned to the correct municipality. The third step involves semantic enrichment by a process that includes the normalization of time expressions to extract important information from the municipal heat plan documents that relate to time sequences, as well as the extraction of geographical units to link the document to the correct municipality.

A Web interface provides access to the detected municipal heat plans for evaluation and research purposes.

This work was funded by digitalLänd (https://digital-laend.de) and NEED (BMWK 03EN3077J) (https://need.energy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    for municipalities with more than 100,000 inhabitants.

  2. 2.

    for municipalities with fewer than 100,000 inhabitants.

References

  1. Städte (Alle Gemeinden mit Stadtrecht) nach Fläche, Bevölkerung und Bevölkerungsdichte am 31.12.2022 (2023). https://www.destatis.de/DE/Themen/Laender-Regionen/Regionales/Gemeindeverzeichnis/Administrativ/05-staedte.html. Accessed 20 Aug 2024

  2. Ding, W., Chen, J., Li, J., Qu, Y.: Automatic rule generation for time expression normalization. In: Moens, M.F., et al. (eds.) Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 3135–3144. Association for Computational Linguistics, Punta Cana, Dominican Republic, November 2021. https://doi.org/10.18653/v1/2021.findings-emnlp.269, https://aclanthology.org/2021.findings-emnlp.269

  3. Ding, W., Gao, G., Shi, L., Qu, Y.: A pattern-based approach to recognizing time expressions. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. AAAI’19/IAAI’19/EAAI’19, AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33016335

  4. Geographische Namen 1:250 000 (GN250) (2024). https://gdz.bkg.bund.de/index.php/default/open-data/geographische-namen-1-250-000-gn250.html. Accessed 20 Aug 2024

  5. Verwaltungsgebiete (2024). https://gdz.bkg.bund.de/index.php/default/open-data/verwaltungsgebiete-1-5-000-000-stand-01-01-vg5000-01-01.html. Accessed 20 Aug 2024

  6. Bevölkerung: Kreise, Stichtag, Altersgruppen nach Zensus 2011 (2024). https://www-genesis.destatis.de/datenbank/beta/statistic/12411/table/12411-0017. Accessed 20 Aug 2024

  7. Richtlinien zur Förderung von Energiekonzepten und kommunalen Energienutzungsplänen (2023). https://www.gesetze-bayern.de/Content/Document/BayVV_7523_W_14244. Accessed 20 Aug 2024

  8. Gesetz für die Wärmeplanung und zur Dekarbonisierung der Wärmenetze (2023). https://www.gesetze-im-internet.de/wpg/. Accessed 20 Aug 2024

  9. Jalilifard, A., Caridá, V.F., Mansano, A.F., Cristo, R.S., da Fonseca, F.P.C.: Semantic sensitive TF-IDF to determine word relevance in documents. In: Thampi, S.M., Gelenbe, E., Atiquzzaman, M., Chaudhary, V., Li, K.-C. (eds.) Advances in Computing and Network Communications. LNEE, vol. 736, pp. 327–337. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-6987-0_27

    Chapter  Google Scholar 

  10. Klimaschutz- und Klimawandelanpassungsgesetz Baden-Württemberg (KlimaG BW) (2023). https://www.landesrecht-bw.de/perma?d=jlr-KlimaSchGBW2023rahmen. Accessed 20 Aug 2024

  11. May, U., Zaczynska, K., Moreno-Schneider, J., Rehm, G.: Extraction and normalization of vague time expressions in German. In: Evang, K., et al. (eds.) Proceedings of the 17th Conference on Natural Language Processing (KONVENS 2021), pp. 114–126. KONVENS 2021 Organizers, Düsseldorf, Germany, 6–9 September 2021. https://aclanthology.org/2021.konvens-1.10

  12. Pustejovsky, J., Lee, K., Bunt, H., Romary, L.: ISO-TimeML: an international standard for semantic annotation. In: Calzolari, N., et al. (eds.) Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10). European Language Resources Association (ELRA), Valletta, Malta, May 2010. http://www.lrec-conf.org/proceedings/lrec2010/pdf/55_Paper.pdf

  13. Qi, P., Zhang, Y., Zhang, Y., Bolton, J., Manning, C.D.: Stanza: a python natural language processing toolkit for many human languages (2020). https://arxiv.org/abs/2003.07082

  14. Anzahl der Gemeinden in Deutschland nach Gemeindegrößenklassen (2024). https://de.statista.com/statistik/daten/studie/1254/umfrage/anzahl-der-gemeinden-in-deutschland-nach-gemeindegroessenklassen/. Accessed 20 Aug 2024

  15. Betriebe, Beschäftigte und Umsatz im Verarbeitenden Gewerbe (2022). https://www.statistik-bw.de/Industrie/Struktur/06015150.tab?R=KR215. Accessed 20 Aug 2024

  16. Strötgen, J., Gertz, M.: Heideltime: high quality rule-based extraction and normalization of temporal expressions. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 321–324. SemEval ’10, Association for Computational Linguistics, Stroudsburg, PA, USA (2010). http://dl.acm.org/citation.cfm?id=1859664.1859735

  17. Strötgen, J., Minard, A.L., Lange, L., Speranza, M., Magnini, B.: KRAUTS: a German temporally annotated news corpus. In: Calzolari, N., et al. (eds.) Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA), Miyazaki, Japan, 7–12 May 2018

    Google Scholar 

  18. UzZaman, N., Llorens, H., Allen, J., Derczynski, L., Verhagen, M., Pustejovsky, J.: Tempeval-3: evaluating events, time expressions, and temporal relations (2014). https://arxiv.org/abs/1206.5333

  19. Zhong, X., Jin, C., An, M., Cambria, E.: Xtime: a general rule-based method for time expression recognition and normalization. Knowl.-Based Syst. 297, 111921 (2024). https://doi.org/10.1016/j.knosys.2024.111921, https://www.sciencedirect.com/science/article/pii/S0950705124005550

  20. Zhong, X., Sun, A., Cambria, E.: Time expression analysis and recognition using syntactic token types and general heuristic rules. In: Barzilay, R., Kan, M.Y. (eds.) Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 420–429. Association for Computational Linguistics, Vancouver, Canada, July 2017. https://doi.org/10.18653/v1/P17-1039, https://aclanthology.org/P17-1039

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Doms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doms, N., Schlachter, T. (2025). Detection of Municipal Heat Plan Documents Using Semantic Recognition Methods. In: Jørgensen, B.N., Ma, Z.G., Wijaya, F.D., Irnawan, R., Sarjiya, S. (eds) Energy Informatics. EI.A 2024. Lecture Notes in Computer Science, vol 15271. Springer, Cham. https://doi.org/10.1007/978-3-031-74738-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74738-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74737-3

  • Online ISBN: 978-3-031-74738-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics