Abstract
This work presents a sound backward analysis for sufficient pre-conditions inference in C programs, by abstract interpretation. It utilizes the under-approximation abstract operators studied by Milanese and Miné [32, 35] for a purely numeric subset of C, and extends them to support the C memory model. Pointer dereferences are handled with the cell abstraction [34] and dynamic memory allocations with the recency abstraction [3]. A direct usage of the abstract operators proposed in these previous works in an under-approximation framework is not possible as either internally they rely on over-approximated operators (e.g., cell removal) or an extension to this framework is not straightforward (e.g., under-approximating join). In this work we propose new operators that are under-approximating, and on top of this we design a backward semantics. The analysis is implemented in the MOPSA analyzer and its performance is assessed in detection of sufficient pre-conditions for runtime errors in 13,261 C tasks from NIST Juliet test suite [5].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
More formally: \(\rho [v \mapsto x] \triangleq \lambda w. {\left\{ \begin{array}{ll} x & \text {if } v = w \\ \rho (w) & \text {otherwise} \end{array}\right. }\).
- 2.
Pointer arithmetic is supported too. For instance \(\langle V,o \rangle + i = \langle V,o+i\rangle \).
- 3.
For the sake of brevity, we omit the handling of runtime errors such as use-after-free or double free, but they are handled in the implementation.
References
Ascari, F., Bruni, R., Gori, R.: Limits and difficulties in the design of under-approximation abstract domains. In: FoSSaCS 2022. LNCS, vol. 13242, pp. 21–39. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99253-8_2
Bagnara, R., Hill, P.M., Zaffanella, E.: Exact join detection for convex polyhedra and other numerical abstractions. Comput. Geom. 43(5), 453–473 (2010). https://doi.org/10.1016/j.comgeo.2009.09.002
Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006). https://doi.org/10.1007/11823230_15
Balatsouras, G., Smaragdakis, Y.: Structure-sensitive points-to analysis for C and C++. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 84–104. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7_5
Black, P.E.: Juliet 1.3 test suite: changes from 1.2. US department of commerce, national institute of standards and technology (2018). https://samate.nist.gov/SARD/test-suites/112
Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: Proceedings of the ACM SIGPLAN 1993 Conference on Programming Language Design and Implementation, p. 46–55. PLDI 1993, Association for Computing Machinery, New York, NY, USA (1993). https://doi.org/10.1145/155090.155095
Bruni, R., Giacobazzi, R., Gori, R., Ranzato, F.: A correctness and incorrectness program logic. J. ACM 70(2) (2023). https://doi.org/10.1145/3582267
Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5_33
Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Space invading systems code. In: Hanus, M. (ed.) LOPSTR 2008. LNCS, vol. 5438, pp. 1–3. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00515-2_1
Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis by means of bi-abduction. J. ACM 58(6) (2011). https://doi.org/10.1145/2049697.2049700
Chang, B.Y.E., Rival, X.: Relational inductive shape analysis. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 247–260. POPL 2008, Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1328438.1328469
Chang, B.-Y.E., Rival, X., Necula, G.C.: Shape analysis with structural invariant checkers. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–401. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2_24
Cousot, P.: Principles of Abstract Interpretation. The MIT Press, Cambridge (2021)
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 238–252. POPL 1977, Association for Computing Machinery, New York, NY, USA (1977). https://doi.org/10.1145/512950.512973
Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 269–282. POPL 1979, Association for Computing Machinery, New York, NY, USA (1979). https://doi.org/10.1145/567752.567778
Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs. J. Logic Program. 13(2), 103–179 (1992). https://doi.org/10.1016/0743-1066(92)90030-7
Cousot, P., Cousot, R.: Refining model checking by abstract interpretation. Autom. Softw. Eng. 6(1), 69–95 (1999). https://doi.org/10.1023/A:1008649901864
Cousot, P., Cousot, R., Logozzo, F.: Precondition inference from intermittent assertions and application to contracts on collections. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 150–168. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_12
Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 84–96. POPL 1978, Association for Computing Machinery, New York, NY, USA (1978). https://doi.org/10.1145/512760.512770
Floyd, R.W.: Assigning meanings to programs, pp. 65–81. Springer Netherlands, Dordrecht (1993). https://doi.org/10.1007/978-94-011-1793-7_4
Giet, J., Ridoux, F., Rival, X.: A product of shape and sequence abstractions. In: Hermenegildo, M.V., Morales, J.F. (eds.) Static Analysis, pp. 310–342. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44245-2_15
Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric domains with summarized dimensions. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 512–529. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_38
Gurfinkel, A., Navas, J.A.: A context-sensitive memory model for verification of C/C++ programs. In: Ranzato, F. (ed.) SAS 2017. LNCS, vol. 10422, pp. 148–168. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66706-5_8
Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, pp. 54–61. PASTE 2001, Association for Computing Machinery, New York, NY, USA (2001). https://doi.org/10.1145/379605.379665
Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259
Journault, M., Miné, A., Monat, R., Ouadjaout, A.: Combinations of reusable abstract domains for a multilingual static analyzer. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE 2019. LNCS, vol. 12031, pp. 1–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41600-3_1
Journault, M., Miné, A., Ouadjaout, A.: Modular static analysis of string manipulations in C programs. In: Podelski, A. (ed.) SAS 2018. LNCS, vol. 11002, pp. 243–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99725-4_16
Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analysis with heap cloning practical for the real world. In: Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 278–289. PLDI 2007, Association for Computing Machinery, New York, NY, USA (2007). https://doi.org/10.1145/1250734.1250766
Le, Q.L., Raad, A., Villard, J., Berdine, J., Dreyer, D., O’Hearn, P.W.: Finding real bugs in big programs with incorrectness logic. Proc. ACM Program. Lang. 6(OOPSLA1) (2022). https://doi.org/10.1145/3527325
Lev-Ami, T., Sagiv, M., Reps, T., Gulwani, S.: Backward analysis for inferring quantified preconditions (2007)
Li, H., Rival, X., Chang, B.-Y.E.: Shape analysis for unstructured sharing. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 90–108. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-9_6
Milanese, M., Miné, A.: Generation of violation witnesses by under-approximating abstract interpretation. In: Dimitrova, R., Lahav, O., Wolff, S. (eds.) Verification, Model Checking, and Abstract Interpretation, pp. 50–73. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-50524-9_3
Milanese, M., Miné, A.: Artifact of paper: “Under-approximating Memory Abstractions" (2024). https://doi.org/10.5281/zenodo.11217437
Miné, A.: Field-sensitive value analysis of embedded c programs with union types and pointer arithmetics. In: Proceedings of the 2006 ACM SIGPLAN/SIGBED Conference on Language, Compilers, and Tool Support for Embedded Systems, pp. 54–63. LCTES 2006, Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1134650.1134659
Miné, A.: Backward under-approximations in numeric abstract domains to automatically infer sufficient program conditions. Sci. Comput. Program. 93, 154–182 (2014). https://doi.org/10.1016/j.scico.2013.09.014. special Issue on Invariant Generation
Moy, Y.: Sufficient preconditions for modular assertion checking. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 188–202. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78163-9_18
O’Hearn, P.W.: Incorrectness logic. Proc. ACM Program. Lang. 4(POPL) (2019). https://doi.org/10.1145/3371078
Ouadjaout, A., Miné, A.: A library modeling language for the static analysis of C programs. In: Pichardie, D., Sighireanu, M. (eds.) SAS 2020. LNCS, vol. 12389, pp. 223–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65474-0_11
Raad, A., Berdine, J., Dang, H.-H., Dreyer, D., O’Hearn, P., Villard, J.: Local reasoning about the presence of bugs: incorrectness separation logic. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 225–252. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8_14
Remil, N.M., Urban, C., Miné, A.: Automatic detection of vulnerable variables for CTL properties of programs. In: Bjorner, N., Heule, M., Voronkov, A. (eds.) Proceedings of 25th Conference on Logic for Programming, Artificial Intelligence and Reasoning. EPiC Series in Computing, vol. 100, pp. 116–126. EasyChair (2024). https://doi.org/10.29007/dnpx, https://easychair.org/publications/paper/n5Rq
Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pp. 55–74 (2002). https://doi.org/10.1109/LICS.2002.1029817
Rival, X.: https://www.di.ens.fr/~rival/memcad.html
Schmidt, D.A.: A calculus of logical relations for over- and underapproximating static analyses. Sci. Comput. Program. 64(1), 29–53 (2007). https://doi.org/10.1016/j.scico.2006.03.008, special issue on the 11th Static Analysis Symposium - SAS 2004
Steensgaard, B.: Points-to analysis by type inference of programs with structures and unions. In: Proceedings of the 6th International Conference on Compiler Construction, pp. 136–150. CC 1996, Springer, Heidelberg (1996). https://doi.org/10.5555/647473.727458
Steensgaard, B.: Points-to analysis in almost linear time. In: Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 32–41. POPL 1996, Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/237721.237727
Urban, C., Ueltschi, S., Müller, P.: Abstract interpretation of CTL properties. In: Podelski, A. (ed.) SAS 2018. LNCS, vol. 11002, pp. 402–422. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99725-4_24
de Vries, E., Koutavas, V.: Reverse hoare logic. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 155–171. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24690-6_12
Wang, W., Barrett, C., Wies, T.: Partitioned memory models for program analysis. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 539–558. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52234-0_29
Acknowledgments
This work was supported by the SECUREVAL project. The SECUREVAL project was funded by the “France 2030” government investment plan managed by the French National Research Agency, under the reference ANR-22-PECY-0005.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Milanese, M., Miné, A. (2025). Under-Approximating Memory Abstractions. In: Giacobazzi, R., Gorla, A. (eds) Static Analysis. SAS 2024. Lecture Notes in Computer Science, vol 14995. Springer, Cham. https://doi.org/10.1007/978-3-031-74776-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-74776-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-74775-5
Online ISBN: 978-3-031-74776-2
eBook Packages: Computer ScienceComputer Science (R0)