Abstract
Multi-label neural networks are important in various tasks, including safety-critical tasks. Several works show that these networks are susceptible to adversarial attacks, which can remove a target label from the predicted label list or add a target label to this list. To date, no deterministic verifier determines the list of labels for which a multi-label neural network is locally robust. The main challenge is that the complexity of the analysis increases by a factor exponential in the multiplication of the number of labels and the number of predicted labels. We propose MuLLoC, a sound and complete robustness verifier for multi-label image classifiers that determines the robust labels in a given neighborhood of inputs. To scale the analysis, MuLLoC relies on fast optimistic queries to the network or to a constraint solver. Its queries include sampling and pair-wise relation analysis via numerical optimization and mixed-integer linear programming (MILP). For the remaining unclassified labels, MuLLoC performs an exact analysis by a novel mixed-integer programming (MIP) encoding for multi-label classifiers. We evaluate MuLLoC on convolutional networks for three multi-label image datasets. Our results show that MuLLoC classifies all labels as robust or not within 23.22 min on average and that our fast optimistic queries classify 96.84% of the labels.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Balunovic, M., Baader, M., Singh, G., Gehr, T., Vechev, M.T.: Certifying geometric robustness of neural networks. In: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems NeurIPS, pp. 15287–15297 (2019)
Benussi, E., Patanè, A., Wicker, M., Laurenti, L., Kwiatkowska, M.: Individual fairness guarantees for neural networks. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 651–658 (2022)
Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)
Chen, M., Zheng, A.X., Weinberger, K.Q.: Fast image tagging. In: Proceedings of the 30th International Conference on Machine Learning, ICML. JMLR Workshop and Conference Proceedings, vol. 28, pp. 1274–1282 (2013)
Croce, F., Andriushchenko, M., Singh, N.D., Flammarion, N., Hein, M.: Sparse-rs: a versatile framework for query-efficient sparse black-box adversarial attacks. In: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI, pp. 6437–6445. AAAI Press (2022)
Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)
Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.T.: AI2: safety and robustness certification of neural networks with abstract interpretation. In: IEEE Symposium on Security and Privacy, SP, pp. 3–18. IEEE Computer Society (2018)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: 3rd International Conference on Learning Representations, ICLR (2015)
Grodzicki, R., Mańdziuk, J., Wang, L.: Improved multilabel classification with neural networks. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 409–416. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_41
Hsieh, C., Lin, Y., Lin, H.: A deep model with local surrogate loss for general cost-sensitive multi-label learning. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), pp. 3239–3246. AAAI Press (2018)
Hu, S., Ke, L., Wang, X., Lyu, S.: Tkml-ap: adversarial attacks to top-k multi-label learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7649–7657 (2021)
Jacoby, Y., Barrett, C., Katz, G.: Verifying recurrent neural networks using invariant inference. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 57–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_3
Ji, S., Wang, K., Peng, X., Yang, J., Zeng, Z., Qiao, Y.: Multiple transfer learning and multi-label balanced training strategies for facial AU detection in the wild. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR Workshops, pp. 1657–1661. Computer Vision Foundation / IEEE (2020)
Jia, J., Qu, W., Gong, N.Z.: Multiguard: Provably robust multi-label classification against adversarial examples. In: Advances in Neural Information Processing Systems NeurIPS (2022)
Kabaha, A., Drachsler-Cohen, D.: Boosting robustness verification of semantic feature neighborhoods. In: Static Analysis - 29th International Symposium, SAS, vol. 13790, pp. 299–324. Springer (2022)
Kong, L., Luo, W., Zhang, H., Liu, Y., Shi, Y.: Evolutionary multi-label adversarial examples: an effective black-box attack. IEEE Trans. Artif. Intell. 1–12 (2022). https://doi.org/10.1109/TAI.2022.3198629
Kurata, G., Xiang, B., Zhou, B.: Improved neural network-based multi-label classification with better initialization leveraging label co-occurrence. In: The Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies NAACL HLT, pp. 521–526 (2016)
Mahmood, H., Elhamifar, E.: Towards effective multi-label recognition attacks via knowledge graph consistency. CoRR abs/2207.05137 (2022)
Melacci, S., et al.: Can domain knowledge alleviate adversarial attacks in multi-label classifiers? CoRR abs/2006.03833 (2020)
Melacci, S., et al.: Domain knowledge alleviates adversarial attacks in multi-label classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 9944–9959 (2022)
Papageorgiou, C., Poggio, T.A.: A trainable system for object detection. Int. J. Comput. Vis. 38(1), 15–33 (2000)
Reshef, R., Kabaha, A., Seleznova, O., Drachsler-Cohen, D.: Verification of neural networks local differential classification privacy. CoRR abs/2310.20299 (2023)
Shapira, Y., Avneri, E., Drachsler-Cohen, D.: Deep learning robustness verification for few-pixel attacks. Proc. ACM Program. Lang. 7(OOPSLA1), 434–461 (2023)
Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective robustness certification. In: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems NeurIPS (2018)
Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying neural networks. Proc. ACM Program. Lang. 3(POPL) (2019)
Song, Q., Jin, H., Huang, X., Hu, X.: Multi-label adversarial perturbations. In: IEEE International Conference on Data Mining, ICDM, pp. 1242–1247. IEEE Computer Society (2018)
Sumbul, G., Charfuelan, M., Demir, B., Markl, V.: Bigearthnet: a large-scale benchmark archive for remote sensing image understanding. CoRR abs/1902.06148 (2019)
Sun, S.H.: Multi-digit mnist for few-shot learning (2019). https://github.com/shaohua0116/MultiDigitMNIST
Sun, Y., Usman, M., Gopinath, D., Pasareanu, C.S.: VPN: verification of poisoning in neural networks. In: Software Verification and Formal Methods for ML-Enabled Autonomous Systems - 5th International Workshop, FoMLAS, and 15th International Workshop, NSV, vol. 13466, pp. 3–14. Springer (2022)
Szegedy, C., et al.: Intriguing properties of neural networks. In: 2nd International Conference on Learning Representations, ICLR (2014)
Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with mixed integer programming. In: 7th International Conference on Learning Representations, ICLR. OpenReview.net (2019)
Tran, H.-D., et al.: Robustness verification of semantic segmentation neural networks using relaxed reachability. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 263–286. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_12
Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. 3(3), 1–13 (2007)
Urban, C., Christakis, M., Wüstholz, V., Zhang, F.: Perfectly parallel fairness certification of neural networks. Proc. ACM Program. Lang. 4(OOPSLA), 185:1–185:30 (2020)
Weston, J., Bengio, S., Usunier, N.: WSABIE: scaling up to large vocabulary image annotation. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence IJCAI, pp. 2764–2770. IJCAI/AAAI (2011)
Wu, Y., Bamman, D., Russell, S.: Adversarial training for relation extraction. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP, pp. 1778–1783. Association for Computational Linguistics (2017)
Xu, K., et al.: Fast and complete: enabling complete neural network verification with rapid and massively parallel incomplete verifiers. In: 9th International Conference on Learning Representations, ICLR. OpenReview.net (2021)
Yang, Z., Han, Y., Zhang, X.: Characterizing the evasion attackability of multi-label classifiers. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35. no. 12, pp. 10647–10655 (2021). https://doi.org/10.1609/aaai.v35i12.17273, https://ojs.aaai.org/index.php/AAAI/article/view/17273
Zhang, M., Zhou, Z.: Multi-label neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)
Zhou, N., Luo, W., Lin, X., Xu, P., Zhang, Z.: Generating multi-label adversarial examples by linear programming. In: International Joint Conference on Neural Networks, IJCNN, pp. 1–8. IEEE (2020)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mour, J., Drachsler-Cohen, D. (2025). Robustness Verification of Multi-label Neural Network Classifiers. In: Giacobazzi, R., Gorla, A. (eds) Static Analysis. SAS 2024. Lecture Notes in Computer Science, vol 14995. Springer, Cham. https://doi.org/10.1007/978-3-031-74776-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-74776-2_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-74775-5
Online ISBN: 978-3-031-74776-2
eBook Packages: Computer ScienceComputer Science (R0)