Skip to main content

On the Role of Cognizance in Responsibility

  • Conference paper
  • First Online:
Static Analysis (SAS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14995))

Included in the following conference series:

  • 101 Accesses

Abstract

A novel definition of responsibility analysis based on abstract interpretation has been recently proposed [5, 6]. One of the main distinguishing features of this approach with respect to the existing notions of causality in the literature, is the incorporation of the observer’s viewpoint. Responsibility considers actions as responsible based on what the observer can understand of the behaviors of interest when analyzing the execution traces and concerning the specific capabilities of the observer. While the other existing approaches to causality implicitly refer to an omniscient observer who knows everything that occurred.

In this paper, we are interested in further investigating the observer’s role in identifying the responsible action of a given behavior of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A core calculus of dependency. In: Appel, A.W., Aiken, A. (eds.) POPL ’99, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio, TX, USA, 20–22 January 1999, pp. 147–160. ACM (1999)

    Google Scholar 

  2. Cheney, J., Ahmed, A., Acar, U.A.: Provenance as dependency analysis. CoRR abs/0708.2173 (2007)

    Google Scholar 

  3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Graham, R.M., Harrison, M.A., Sethi, R. (eds.) Proceedings of the 4th ACM Symposium on Principles of Programming Languages, Los Angeles, California, USA, January 1977, pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.512973

  4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Aho, A.V., Zilles, S.N., Rosen, B.K. (eds.) Proceedings of the 6th ACM Symposium on Principles of Programming Languages, San Antonio, Texas, USA, January 1979, pp. 269–282. ACM Press (1979). https://doi.org/10.1145/567752.567778

  5. Deng, C., Cousot, P.: Responsibility analysis by abstract interpretation. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 368–388. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32304-2_18

    Chapter  MATH  Google Scholar 

  6. Deng, C., Cousot, P.: The systematic design of responsibility analysis by abstract interpretation. ACM Trans. Program. Lang. Syst. 44(1), 3:1–3:90 (2022)

    Google Scholar 

  7. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach: part 1: causes. Brit. J. Philos. Sci. 56(4), 843–887 (2005)

    Google Scholar 

  8. Lewis, D.: Causation. J. Philoso. 70(17) (1973)

    Google Scholar 

  9. Lewis, D.: Counterfactuals. John Wiley & Sons, Hoboken (2013)

    Google Scholar 

  10. Pearl, J.: Causality: Models, Reasoning and Inference (2nd ed.). Cambridge University Press, Cambridge (2013)

    Google Scholar 

  11. Pistoia, M., Flynn, R.J., Koved, L., Sreedhar, V.C.: Interprocedural analysis for privileged code placement and tainted variable detection. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 362–386. Springer, Heidelberg (2005). https://doi.org/10.1007/11531142_16

    Chapter  Google Scholar 

  12. Rival, X.: Understanding the origin of alarms in astrée. In: International Static Analysis Symposium, pp. 303–319. Springer (2005)

    Google Scholar 

  13. Urban, C., Müller, P.: An abstract interpretation framework for input data usage. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 683–710. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1_24

    Chapter  MATH  Google Scholar 

  14. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. SE-10(4), 352–357 (1984)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by Air Force Office of Scientific Research under award number FA9550-23-1-0544 and by the project SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded by the European Union - NextGenerationEU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Canaia .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Lemma 1. Assumption A2 implies that \(\sigma \in {\llbracket P \rrbracket }^{ Pref }\;\Rightarrow \;\mathbb {C}(\sigma ) \subseteq {\llbracket P \rrbracket }^{ Pref }\).

Proof

A2 states that \(\forall \sigma \in \varSigma ^{*\infty }. \sigma \not \in {\llbracket P \rrbracket }^{ Pref }\;\Rightarrow \;\mathbb {C}(\sigma ) \cap {\llbracket P \rrbracket }^{ Pref }= \emptyset \). Note that also the converse holds. Assume that \(\mathbb {C}(\sigma ) \cap {\llbracket P \rrbracket }^{ Pref }= \emptyset \), this means that \(\forall \sigma ' \in \mathbb {C}(\sigma )\) we have that \(\sigma '\not \in {\llbracket P \rrbracket }^{ Pref }\) and this implies that \(\sigma \not \in {\llbracket P \rrbracket }^{ Pref }\) which contradicts the hypothesis. Thus, we have that \( \sigma \not \in {\llbracket P \rrbracket }^{ Pref }\;\Leftrightarrow \;\mathbb {C}(\sigma ) \cap {\llbracket P \rrbracket }^{ Pref }= \emptyset \). Given \(\sigma \in {\llbracket P \rrbracket }^{ Pref }\), assume that \(\mathbb {C}(\sigma ) \not \subseteq {\llbracket P \rrbracket }^{ Pref }\). This means that \(\exists \sigma ' \in \mathbb {C}(\sigma ): \sigma ' \not \in {\llbracket P \rrbracket }^{ Pref }\). From what we have just proved this means that \(\mathbb {C}(\sigma ') \cap {\llbracket P \rrbracket }^{ Pref }= \emptyset \) and since \(\sigma \in \mathbb {C}(\sigma ')\) we get to the contradiction that \(\sigma \not \in {\llbracket P \rrbracket }^{ Pref }\).

Theorem 1. For the cognizance \(\mathbb {C}\) of an attacker, if \(\tau _R\) is responsible for a behavior \(\mathcal {B}\) in a valid trace \(\sigma _H\tau _R\sigma _F\), then:

  1. 1.

    \(\sigma _H\tau _R\) guarantees the occurrence of the behavior \(\mathcal {B}\),

  2. 2.

    there exists a valid trace \(\sigma ' s \in {\llbracket P \rrbracket }^{ Pref }\) such that \(\sigma ' \in \mathbb {C}(\sigma _H)\) and \(\sigma 's\) does not guarantee the behavior \(\mathcal {B}\).

Proof

  1. 1.

    By definition, we have that \(\emptyset \subset \mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C},\sigma _H\tau _R) \subseteq \mathcal {B}\). This is true iff \({\mathop {\cup }\limits ^{\diamond }}\{\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ') ~|~ \sigma '\in \mathbb {C}(\sigma _H\tau _R)\} \subseteq \mathcal {B}\}\), namely if \(\forall \sigma ' \in \mathbb {C}(\sigma _H\tau _R)\) it holds that \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ')\subseteq \mathcal {B}\). In particular, it holds for \(\sigma _H\tau _R\), and this means that \(\sigma _H\tau _R \in \alpha _ Pred ({\llbracket P \rrbracket }^{ Max })\mathcal {B}\) and therefore \(\sigma _H\tau _R\) guarantees the behavior \(\mathcal {B}\).

  2. 2.

    By definition, we have that \( \mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C},\sigma _H) \not \subseteq \mathcal {B}\). This means that \({\mathop {\cup }\limits ^{\diamond }}\{\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ') ~|~ \sigma '\in \mathbb {C}(\sigma _H) \not \subseteq \mathcal {B}\}\). This means that \(\exists \sigma ' \in \mathbb {C}(\sigma _H)\) such that \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ')\not \subseteq \mathcal {B}\). This \(\sigma '\) is such that \(\sigma '\in {\llbracket P \rrbracket }^{ Pref }\), since if \(\sigma '\not \in {\llbracket P \rrbracket }^{ Pref }\) then \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ') = \bot ^{ Max } \subseteq \mathcal {B}\). Thus, \(\sigma '\) is valid: \(\sigma '\in {\llbracket P \rrbracket }^{ Pref }\). Moreover, (from what observed on the inquiry function and proved in Corollary 4 of [6]) it has to hold that \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ') = {\mathop {\cup }\limits ^{\diamond }}\{\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma 's) ~|~ \sigma 's\in {\llbracket P \rrbracket }^{ Pref }\}\not \subseteq \mathcal {B}\). Namely, \(\exists \sigma 's\in {\llbracket P \rrbracket }^{ Pref }\) such that \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma 's) \not \subseteq \mathcal {B}\). Which means that this valid trace \(\sigma 's \not \in \alpha _ Pred ({\llbracket P \rrbracket }^{ Max })\mathcal {B}\) and therefore does not guarantee the behavior \(\mathcal {B}\).

Lemma 2. If \(\mathbb {C}\, \sqsubseteq \, \equiv _\mathbb {I}\,\) then \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max }, \sigma ) = \mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C},\sigma )\)

Proof

By def, \(\mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C},\sigma ) = {\mathop {\cup }\limits ^{\diamond }}\{\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max }, \sigma ') ~|~ \sigma ' \in \mathbb {C}(\sigma )\} \). Thus, it is enough to show that if \(\mathbb {C}\, \sqsubseteq \, \equiv _\mathbb {I}\,\) then \(\forall \sigma ' \in \mathbb {C}(\sigma )\) it holds that \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ) = \mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ')\). If \(\mathbb {C}\, \sqsubseteq \, \equiv _\mathbb {I}\,\) then \(\forall \sigma \in {\llbracket P \rrbracket }^{ Pref }: [\sigma ]_\mathbb {C}\subseteq [\sigma ]_\mathbb {I}\). Therefore, if \(\mathbb {C}(\sigma ) = \mathbb {C}(\sigma ')\) then \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ) = \mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ')\) and this implies that \(\forall \sigma ' \in \mathbb {C}(\sigma )\), then \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ) = \mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ')\), therefore \({\mathop {\cup }\limits ^{\diamond }}\{\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ') ~|~ \sigma ' \in \mathbb {C}(\sigma )\} = \mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma )\).

Corollary 1. If \(\mathbb {C}\, \sqsubseteq \, \equiv _\mathbb {I}\,\) then

$$\alpha _R({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C},\mathcal {B},\mathcal {T}) = \alpha _R({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C}_o,\mathcal {B},\mathcal {T})$$

Proof

$$\begin{aligned} \alpha _R({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C},\mathcal {B},\mathcal {T}) & = \left\{ \langle \sigma _H,\tau _R,\sigma _F \rangle \left| \begin{array}{l}\sigma _H\tau _R\sigma _F \in {\llbracket P \rrbracket }^{ Pref }\\ \emptyset \subset \mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C},\sigma _H\tau _R) \subseteq \mathcal {B}\\ \mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C},\sigma _H) \not \subseteq \mathcal {B}\end{array} \right. \right\} \\ & \text{[From } \text{ Lemma }~2]\\ & = \left\{ \langle \sigma _H,\tau _R,\sigma _F \rangle \left| \begin{array}{l}\sigma _H\tau _R\sigma _F \in {\llbracket P \rrbracket }^{ Pref }\\ \emptyset \subset \mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma _H\tau _R) \subseteq \mathcal {B}\\ \mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma _H) \not \subseteq \mathcal {B}\end{array} \right. \right\} \\ & \text{[From } \text{ Definition } \text{ of } \mathbb {C}_o]\\ & = \left\{ \langle \sigma _H,\tau _R,\sigma _F \rangle \left| \begin{array}{l}\sigma _H\tau _R\sigma _F \in {\llbracket P \rrbracket }^{ Pref }\\ \emptyset \subset \mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C}_o,\sigma _H\tau _R) \subseteq \mathcal {B}\\ \mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C}_o,\sigma _H) \not \subseteq \mathcal {B}\end{array} \right. \right\} \\ & = \alpha _R({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C}_o,\mathcal {B},\mathcal {T})\\ \end{aligned}$$

Lemma 3. If \(\mathbb {C}_1 \, \sqsubseteq \, \mathbb {C}_2 \,\) then \(\mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C}_1,\sigma ) \subseteq \mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C}_2,\sigma )\)

Proof

The hypothesis \(\mathbb {C}_1 \, \sqsubseteq \, \mathbb {C}_2\) means that \(\forall \sigma \in \varSigma ^{*\infty }: \mathbb {C}_1(\sigma ) \subseteq \mathbb {C}_2(\sigma )\). Hence:

$$\begin{aligned} \mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C}_1,\sigma ) & = {\mathop {\cup }\limits ^{\diamond }}\{\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ') ~|~ \sigma ' \in \mathbb {C}_1(\sigma )\}\\ & [\text{ Since } \mathbb {C}_1(\sigma ) \subseteq \mathbb {C}_2(\sigma )]\\ & \subseteq {\mathop {\cup }\limits ^{\diamond }}\{\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ') ~|~ \sigma ' \in \mathbb {C}_2(\sigma )\}\\ & = \mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C}_2,\sigma ) \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Canaia, L., Dalla Preda, M. (2025). On the Role of Cognizance in Responsibility. In: Giacobazzi, R., Gorla, A. (eds) Static Analysis. SAS 2024. Lecture Notes in Computer Science, vol 14995. Springer, Cham. https://doi.org/10.1007/978-3-031-74776-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74776-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74775-5

  • Online ISBN: 978-3-031-74776-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics