Abstract
A novel definition of responsibility analysis based on abstract interpretation has been recently proposed [5, 6]. One of the main distinguishing features of this approach with respect to the existing notions of causality in the literature, is the incorporation of the observer’s viewpoint. Responsibility considers actions as responsible based on what the observer can understand of the behaviors of interest when analyzing the execution traces and concerning the specific capabilities of the observer. While the other existing approaches to causality implicitly refer to an omniscient observer who knows everything that occurred.
In this paper, we are interested in further investigating the observer’s role in identifying the responsible action of a given behavior of interest.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A core calculus of dependency. In: Appel, A.W., Aiken, A. (eds.) POPL ’99, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio, TX, USA, 20–22 January 1999, pp. 147–160. ACM (1999)
Cheney, J., Ahmed, A., Acar, U.A.: Provenance as dependency analysis. CoRR abs/0708.2173 (2007)
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Graham, R.M., Harrison, M.A., Sethi, R. (eds.) Proceedings of the 4th ACM Symposium on Principles of Programming Languages, Los Angeles, California, USA, January 1977, pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.512973
Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Aho, A.V., Zilles, S.N., Rosen, B.K. (eds.) Proceedings of the 6th ACM Symposium on Principles of Programming Languages, San Antonio, Texas, USA, January 1979, pp. 269–282. ACM Press (1979). https://doi.org/10.1145/567752.567778
Deng, C., Cousot, P.: Responsibility analysis by abstract interpretation. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 368–388. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32304-2_18
Deng, C., Cousot, P.: The systematic design of responsibility analysis by abstract interpretation. ACM Trans. Program. Lang. Syst. 44(1), 3:1–3:90 (2022)
Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach: part 1: causes. Brit. J. Philos. Sci. 56(4), 843–887 (2005)
Lewis, D.: Causation. J. Philoso. 70(17) (1973)
Lewis, D.: Counterfactuals. John Wiley & Sons, Hoboken (2013)
Pearl, J.: Causality: Models, Reasoning and Inference (2nd ed.). Cambridge University Press, Cambridge (2013)
Pistoia, M., Flynn, R.J., Koved, L., Sreedhar, V.C.: Interprocedural analysis for privileged code placement and tainted variable detection. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 362–386. Springer, Heidelberg (2005). https://doi.org/10.1007/11531142_16
Rival, X.: Understanding the origin of alarms in astrée. In: International Static Analysis Symposium, pp. 303–319. Springer (2005)
Urban, C., Müller, P.: An abstract interpretation framework for input data usage. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 683–710. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1_24
Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. SE-10(4), 352–357 (1984)
Acknowledgement
This work was partially supported by Air Force Office of Scientific Research under award number FA9550-23-1-0544 and by the project SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded by the European Union - NextGenerationEU.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Appendix
A Appendix
Lemma 1. Assumption A2 implies that \(\sigma \in {\llbracket P \rrbracket }^{ Pref }\;\Rightarrow \;\mathbb {C}(\sigma ) \subseteq {\llbracket P \rrbracket }^{ Pref }\).
Proof
A2 states that \(\forall \sigma \in \varSigma ^{*\infty }. \sigma \not \in {\llbracket P \rrbracket }^{ Pref }\;\Rightarrow \;\mathbb {C}(\sigma ) \cap {\llbracket P \rrbracket }^{ Pref }= \emptyset \). Note that also the converse holds. Assume that \(\mathbb {C}(\sigma ) \cap {\llbracket P \rrbracket }^{ Pref }= \emptyset \), this means that \(\forall \sigma ' \in \mathbb {C}(\sigma )\) we have that \(\sigma '\not \in {\llbracket P \rrbracket }^{ Pref }\) and this implies that \(\sigma \not \in {\llbracket P \rrbracket }^{ Pref }\) which contradicts the hypothesis. Thus, we have that \( \sigma \not \in {\llbracket P \rrbracket }^{ Pref }\;\Leftrightarrow \;\mathbb {C}(\sigma ) \cap {\llbracket P \rrbracket }^{ Pref }= \emptyset \). Given \(\sigma \in {\llbracket P \rrbracket }^{ Pref }\), assume that \(\mathbb {C}(\sigma ) \not \subseteq {\llbracket P \rrbracket }^{ Pref }\). This means that \(\exists \sigma ' \in \mathbb {C}(\sigma ): \sigma ' \not \in {\llbracket P \rrbracket }^{ Pref }\). From what we have just proved this means that \(\mathbb {C}(\sigma ') \cap {\llbracket P \rrbracket }^{ Pref }= \emptyset \) and since \(\sigma \in \mathbb {C}(\sigma ')\) we get to the contradiction that \(\sigma \not \in {\llbracket P \rrbracket }^{ Pref }\).
Theorem 1. For the cognizance \(\mathbb {C}\) of an attacker, if \(\tau _R\) is responsible for a behavior \(\mathcal {B}\) in a valid trace \(\sigma _H\tau _R\sigma _F\), then:
-
1.
\(\sigma _H\tau _R\) guarantees the occurrence of the behavior \(\mathcal {B}\),
-
2.
there exists a valid trace \(\sigma ' s \in {\llbracket P \rrbracket }^{ Pref }\) such that \(\sigma ' \in \mathbb {C}(\sigma _H)\) and \(\sigma 's\) does not guarantee the behavior \(\mathcal {B}\).
Proof
-
1.
By definition, we have that \(\emptyset \subset \mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C},\sigma _H\tau _R) \subseteq \mathcal {B}\). This is true iff \({\mathop {\cup }\limits ^{\diamond }}\{\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ') ~|~ \sigma '\in \mathbb {C}(\sigma _H\tau _R)\} \subseteq \mathcal {B}\}\), namely if \(\forall \sigma ' \in \mathbb {C}(\sigma _H\tau _R)\) it holds that \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ')\subseteq \mathcal {B}\). In particular, it holds for \(\sigma _H\tau _R\), and this means that \(\sigma _H\tau _R \in \alpha _ Pred ({\llbracket P \rrbracket }^{ Max })\mathcal {B}\) and therefore \(\sigma _H\tau _R\) guarantees the behavior \(\mathcal {B}\).
-
2.
By definition, we have that \( \mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C},\sigma _H) \not \subseteq \mathcal {B}\). This means that \({\mathop {\cup }\limits ^{\diamond }}\{\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ') ~|~ \sigma '\in \mathbb {C}(\sigma _H) \not \subseteq \mathcal {B}\}\). This means that \(\exists \sigma ' \in \mathbb {C}(\sigma _H)\) such that \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ')\not \subseteq \mathcal {B}\). This \(\sigma '\) is such that \(\sigma '\in {\llbracket P \rrbracket }^{ Pref }\), since if \(\sigma '\not \in {\llbracket P \rrbracket }^{ Pref }\) then \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ') = \bot ^{ Max } \subseteq \mathcal {B}\). Thus, \(\sigma '\) is valid: \(\sigma '\in {\llbracket P \rrbracket }^{ Pref }\). Moreover, (from what observed on the inquiry function and proved in Corollary 4 of [6]) it has to hold that \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ') = {\mathop {\cup }\limits ^{\diamond }}\{\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma 's) ~|~ \sigma 's\in {\llbracket P \rrbracket }^{ Pref }\}\not \subseteq \mathcal {B}\). Namely, \(\exists \sigma 's\in {\llbracket P \rrbracket }^{ Pref }\) such that \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma 's) \not \subseteq \mathcal {B}\). Which means that this valid trace \(\sigma 's \not \in \alpha _ Pred ({\llbracket P \rrbracket }^{ Max })\mathcal {B}\) and therefore does not guarantee the behavior \(\mathcal {B}\).
Lemma 2. If \(\mathbb {C}\, \sqsubseteq \, \equiv _\mathbb {I}\,\) then \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max }, \sigma ) = \mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C},\sigma )\)
Proof
By def, \(\mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C},\sigma ) = {\mathop {\cup }\limits ^{\diamond }}\{\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max }, \sigma ') ~|~ \sigma ' \in \mathbb {C}(\sigma )\} \). Thus, it is enough to show that if \(\mathbb {C}\, \sqsubseteq \, \equiv _\mathbb {I}\,\) then \(\forall \sigma ' \in \mathbb {C}(\sigma )\) it holds that \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ) = \mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ')\). If \(\mathbb {C}\, \sqsubseteq \, \equiv _\mathbb {I}\,\) then \(\forall \sigma \in {\llbracket P \rrbracket }^{ Pref }: [\sigma ]_\mathbb {C}\subseteq [\sigma ]_\mathbb {I}\). Therefore, if \(\mathbb {C}(\sigma ) = \mathbb {C}(\sigma ')\) then \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ) = \mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ')\) and this implies that \(\forall \sigma ' \in \mathbb {C}(\sigma )\), then \(\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ) = \mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ')\), therefore \({\mathop {\cup }\limits ^{\diamond }}\{\mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma ') ~|~ \sigma ' \in \mathbb {C}(\sigma )\} = \mathbb {I}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\sigma )\).
Corollary 1. If \(\mathbb {C}\, \sqsubseteq \, \equiv _\mathbb {I}\,\) then
Proof
Lemma 3. If \(\mathbb {C}_1 \, \sqsubseteq \, \mathbb {C}_2 \,\) then \(\mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C}_1,\sigma ) \subseteq \mathbb {O}({\llbracket P \rrbracket }^{ Max },\mathcal {L}^{ Max },\mathbb {C}_2,\sigma )\)
Proof
The hypothesis \(\mathbb {C}_1 \, \sqsubseteq \, \mathbb {C}_2\) means that \(\forall \sigma \in \varSigma ^{*\infty }: \mathbb {C}_1(\sigma ) \subseteq \mathbb {C}_2(\sigma )\). Hence:
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Canaia, L., Dalla Preda, M. (2025). On the Role of Cognizance in Responsibility. In: Giacobazzi, R., Gorla, A. (eds) Static Analysis. SAS 2024. Lecture Notes in Computer Science, vol 14995. Springer, Cham. https://doi.org/10.1007/978-3-031-74776-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-74776-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-74775-5
Online ISBN: 978-3-031-74776-2
eBook Packages: Computer ScienceComputer Science (R0)