Skip to main content

Tuning of a Predictive Control Scheme for Intravenous Anaesthesia Exploring Set of Fixed Ratios

  • Conference paper
  • First Online:
The 19th International Conference on Soft Computing Models in Industrial and Environmental Applications SOCO 2024 (SOCO 2024)

Abstract

This work addresses automatic control of total intravenous anaesthesia performed by exploiting a Model Predictive Control (MPC) technique. The analyzed control scenario considers simultaneous infusion of propofol and remifentanil to attain hypnotic and analgesic effects, respectively. As common in the clinical practice, a fixed ratio between these infused drugs is assumed. Such a ratio can be set by the anaesthesiologists according to the type of medical intervention and to their individual preferences. Thus, it is necessary to account for this aspect of clinical practice during the control system design stage. This is obtained through the use of a suitable MPC-based control architecture whose tuning parameters are adequately computed by taking into account the selected ratio. The methodology provided in this work first addresses the tuning for a fixed set of ratios. Subsequently, a generalization of the approach is provided to allow any ratio belonging to a defined range. The effectiveness of the presented solution is evaluated through a simulation study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouillon, T., Bruhn, J., Radulescu, L., Bertaccini, E., Park, S., Shafer, T.: Non-steady state analysis of the pharmacokinetic interaction between propofol and remifentanil. Anesthesiology 97, 1350–1362 (2002)

    Article  CAS  Google Scholar 

  2. Eskandari, N., van Heusden, K., Dumont, G.A.: Extended habituating model predictive control of propofol and remifentanil anesthesia. Biomed. Sig. Process. Control 55, 101656 (2020)

    Article  Google Scholar 

  3. Ionescu, C.: A computationally efficient hill curve adaptation strategy during continuous monitoring of dose-effect relation in anaesthesia. Nonlinear Dyn. 92(3), 843–852 (2018)

    Article  Google Scholar 

  4. Ionescu, C., Neckebroek, M., Ghita, M., Copot, D.: An open source patient simulator for design and evaluation of computer based multiple drug dosing control for anesthetic and hemodynamic variables. IEEE Access 9, 8680–8694 (2021)

    Article  Google Scholar 

  5. Ionescu, C.M., Keyser, R.D., Torrico, B.C., Smet, T.D., Struys, M.M., Normey-Rico, J.E.: Robust predictive control strategy applied for propofol dosing using BIS as a controlled variable during anesthesia. IEEE Trans. Biomed. Eng. 55(9), 2161–2170 (2008)

    Article  Google Scholar 

  6. Khodaei, M.J., Candelino, N., Mehrvarz, A., Jalili, N.: Physiological closed-loop control (PCLC) systems: review of a modern frontier in automation. IEEE Access 8, 23965–24005 (2020)

    Article  Google Scholar 

  7. Liu, N., et al.: Closed-loop coadministration of propofol and remifentanil guided by bispectral index: a randomized multicenter study. Anesth. Analg. 112(3), 546–557 (2017)

    Article  Google Scholar 

  8. Mahfouf, M., Nunes, C.S., Linkens, D.A., Peacock, J.E.: Modelling and multivariable control in anaesthesia using neuralfuzzy paradigms part ii: closed-loop control of simultaneous administration of propofol and remifentanil. Artif. Intell. Med. 35(3), 207–213 (2005)

    Google Scholar 

  9. Merigo, L., Padula, F., Latronico, N., Paltenghi, M., Visioli, A.: Event-based control tuning of propofol and remifentanil coadministration for general anaesthesia. IET Control Theory Appl. 14, 2995–3008 (2020)

    Article  Google Scholar 

  10. Merigo, L., et al.: A modelbased control scheme for depth of hypnosis in anesthesia. Biomed. Sig. Process. Control 42, 216–229 (2018)

    Article  Google Scholar 

  11. Minto, C., et al.: Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. Anesthesiology 86, 10–23 (1997)

    Article  CAS  Google Scholar 

  12. Nascu, I., Oberdieck, R., Pistikopoulos, E.N.: An explicit hybrid model predictive control strategy for intravenous anaesthesia. In: Proceedings of the 9th IFAC Symposium on Biological and Medical Systems BMS, Berlin, Germany (2015)

    Google Scholar 

  13. Padula, F., Ionescu, C., Latronico, N., Paltenghi, M., Visioli, A., Vivacqua, G.: Optimized PID control of depth of hypnosis in anesthesia. Comput. Methods Programs Biomed. 144, 21–35 (2017)

    Article  Google Scholar 

  14. Pasin, L., et al.: Closed-loop delivery systems versus manually controlled administration of total iv anesthesia: a meta-analysis of randomized clinical trials. Anesth. Analg. 124(2), 456–464 (2017)

    Article  Google Scholar 

  15. Pawlowski, A., Merigo, L., Guzman, J., Visioli, A., Dormido, S.: Event-based GPC for depth of hypnosis in anesthesia for efficient use of propofol. In: 3rd International Conference on Event-Based Control, Communication and Signal Processing (EBCCSP17), Krakow, Poland (2017)

    Google Scholar 

  16. Pawlowski, A., Merigo, L., Guzman, J., Dormido, S., Visioli, A.: Two-degree-of-freedom control scheme for depth of hypnosis in anesthesia. IFAC-PapersOnLine 51(4), 72–77 (2018)

    Article  Google Scholar 

  17. Pawlowski, A., Schiavo, M., Latronico, N., Paltenghi, M., Visioli, A.: Linear MPC for anesthesia process with external predictor. Comput. Chem. Eng. 161(107747), 1–13 (2022)

    Google Scholar 

  18. Pawlowski, A., Schiavo, M., Latronico, N., Paltenghi, M., Visioli, A.: Model predictive control using MISO approach for drug co-administration in anaesthesia. J. Process Control 117, 98–111 (2022)

    Article  CAS  Google Scholar 

  19. Pawlowski, A., Schiavo, M., Latronico, N., Paltenghi, M., Visioli, A.: Drug co-administration in anesthesia using event-based MPC. Int. J. Robust Nonlinear Control, 1–23 (2024)

    Google Scholar 

  20. Schiavo, M., Padula, F., Latronico, N., Merigo, L., Paltenghi, M., Visioli, A.: Performance evaluation of an optimized PID controller for propofol and remifentanil coadministration in general anesthesia. IFAC J. Syst. Control 15(100121), 1–16 (2021)

    Google Scholar 

  21. Schinder, T.W., Minto, C.F., Shafer, S.L., Andersen, P.L., Goodale, D.B., Youngs, E.J.: The influence of age on propofol paharmacodynamics. Anesthesiology 90, 1502–1516 (1999)

    Article  Google Scholar 

  22. Struys, M.M.R.F., Vereecke, H., Moerman, A., Jensen, E.W., Verhaeghen, D., Neve, N.D.: Ability of the bispectral index, autoregressive modelling with exogenous input-derived auditory evoked potentials responsiveness during anesthesia with propofol and remifentanil. Anesthesiology 99, 802–812 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors would like to thank Paolo Visieri for his help with control system simulations and performance indexes computation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Pawlowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pawlowski, A., Schiavo, M., Visioli, A. (2024). Tuning of a Predictive Control Scheme for Intravenous Anaesthesia Exploring Set of Fixed Ratios. In: Quintián, H., et al. The 19th International Conference on Soft Computing Models in Industrial and Environmental Applications SOCO 2024. SOCO 2024. Lecture Notes in Networks and Systems, vol 888. Springer, Cham. https://doi.org/10.1007/978-3-031-75013-7_27

Download citation

Publish with us

Policies and ethics