Skip to main content

Osmotic Computing-Based Task Offloading: A Fuzzy Logic-Based Approach

  • Conference paper
  • First Online:
Computing Science, Communication and Security (COMS2 2024)

Abstract

The swift expansion of the information technology (IT) industry has led to a surge in compute-intensive and latency-sensitive applications. While cloud computing can satiate the demands of such applications, its centralized architecture may cause delays in the execution of tasks. To address such issues, edge computing brings computation closer to data sources. However, limited resources on Internet of things (IoT) devices make local execution quite challenging. Therefore, a pliable approach is to consider task offloading for moving heavy tasks to resource-extensive systems like edge/cloud. Osmotic computing, leveraging edge and cloud resources, aims to enhance IoT services. However, the dynamic nature of IoT, edge, and cloud introduces challenges for task offloading. This paper proposes an offloading algorithm using fuzzy logic to manage uncertainty. Furthermore, we introduce an osmotic decision manager (ODM) that employs fuzzy logic for optimized offloading decisions, considering IoT/edge for latency-sensitive tasks and cloud for latency-tolerant tasks. This algorithm aims to improve overall system performance by efficiently offloading tasks based on their specific requirements and constraints. The proposed algorithm undergoes simulation and assessment with diverse synthetic test cases to demonstrate its efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, X., Fan, R., Hu, H., Zhang, N., Atapattu, S., Tsiftsis, T.A.: Joint task offloading and resource allocation for IoT edge computing with sequential task dependency. IEEE Internet Things J. 9(17), 16546–16561 (2022)

    Article  Google Scholar 

  2. Carnevale, L., Celesti, A., Galletta, A., Dustdar, S., Villari, M.: From the cloud to edge and iot: a smart orchestration architecture for enabling osmotic computing. In: 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 419–424 (2018). https://doi.org/10.1109/WAINA.2018.00122

  3. Chen, J., Wu, H., Li, R., Jiao, P.: Green parallel online offloading for dsci-type tasks in iot-edge systems. IEEE Trans. Ind. Inf. 18(11), 7955–7966 (2022). https://doi.org/10.1109/TII.2022.3167668

    Article  Google Scholar 

  4. Fan, W., et al.: Collaborative service placement, task scheduling, and resource allocation for task offloading with edge-cloud cooperation. IEEE Trans. Mob. Comput. (2022)

    Google Scholar 

  5. Gao, B., Zhou, Z., Liu, F., Xu, F.: Winning at the starting line: joint network selection and service placement for mobile edge computing. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 1459–1467. IEEE (2019)

    Google Scholar 

  6. Hong, Z., Chen, W., Huang, H., Guo, S., Zheng, Z.: Multi-hop cooperative computation offloading for industrial IoT-edge-cloud computing environments. IEEE Trans. Parallel Distrib. Syst. 30(12), 2759–2774 (2019)

    Article  Google Scholar 

  7. Ibrar, M., et al.: Adaptive capacity task offloading in multi-hop d2d-based social industrial IoT. IEEE Trans. Netw. Sci. Eng. 10(5), 2843–2852 (2023). https://doi.org/10.1109/TNSE.2022.3192478

    Article  Google Scholar 

  8. Li, Q., Peng, B., Li, Q., Lin, M., Chen, C., Peng, S.: A latency-optimal task offloading scheme using genetic algorithm for dag applications in edge computing. In: 2023 8th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), pp. 344–348. IEEE (2023)

    Google Scholar 

  9. Liu, J., Zhang, Y., Ren, J., Zhang, Y.: Auction-based dependent task offloading for IoT users in edge clouds. IEEE Internet Things J. 10(6), 4907–4921 (2023). https://doi.org/10.1109/JIOT.2022.3221431

    Article  Google Scholar 

  10. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

    Article  Google Scholar 

  11. Neha, B., Panda, S.K., Sahu, P.K.: An efficient task mapping algorithm for osmotic computing-based ecosystem. Int. J. Inf. Technol. 13, 1303–1308 (2021)

    Google Scholar 

  12. Neha, B., Panda, S.K., Sahu, P.K., Sahoo, K.S., Gandomi, A.H.: A systematic review on osmotic computing. ACM Trans. Internet Things 3(2), 1–30 (2022)

    Article  Google Scholar 

  13. Panda, S.K., Dhiman, A., Bhuriya, P.: Efficient real-time task-based scheduling algorithms for iot-fog-cloud architecture. In: 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), pp. 1–7. IEEE (2023)

    Google Scholar 

  14. Qu, G., Wu, H., Li, R., Jiao, P.: Dmro: a deep meta reinforcement learning-based task offloading framework for edge-cloud computing. IEEE Trans. Netw. Serv. Manag. 18(3), 3448–3459 (2021)

    Article  Google Scholar 

  15. Ren, J., Yu, G., He, Y., Li, G.Y.: Collaborative cloud and edge computing for latency minimization. IEEE Trans. Veh. Technol. 68(5), 5031–5044 (2019)

    Article  Google Scholar 

  16. Sharma, V., You, I., Kumar, R., Kim, P.: Computational offloading for efficient trust management in pervasive online social networks using osmotic computing. IEEE Access 5, 5084–5103 (2017)

    Article  Google Scholar 

  17. Sun, C., et al.: Task offloading for end-edge-cloud orchestrated computing in mobile networks. In: 2020 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6. IEEE (2020)

    Google Scholar 

  18. Thanedar, M.A., Panda, S.K.: A dynamic resource management algorithm for maximizing service capability in fog-empowered vehicular ad-hoc networks. In: Peer-to-Peer Networking and Applications, pp. 1–15 (2023)

    Google Scholar 

  19. Thanedar, M.A., Panda, S.K.: An energy-efficient resource allocation algorithm for managing on-demand services in fog-enabled vehicular ad-hoc networks. Int. J. Web Grid Serv., 1–24 (2024)

    Google Scholar 

  20. Ullah, I., Lim, H.K., Seok, Y.J., Han, Y.H.: Optimizing task offloading and resource allocation in edge-cloud networks: a DRL approach. J. Cloud Comput. 12(1), 112 (2023)

    Article  Google Scholar 

  21. Villari, M., Celesti, A., Fazio, M.: Towards osmotic computing: looking at basic principles and technologies. In: Barolli, L., Terzo, O. (eds.) CISIS 2017. AISC, vol. 611, pp. 906–915. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61566-0_86

    Chapter  Google Scholar 

  22. Villari, M., Fazio, M., Dustdar, S., Rana, O., Ranjan, R.: Osmotic computing: a new paradigm for edge/cloud integration. IEEE Cloud Comput. 3(6), 76–83 (2016)

    Article  Google Scholar 

  23. Wu, H., Wolter, K., Jiao, P., Deng, Y., Zhao, Y., Xu, M.: Eedto: an energy-efficient dynamic task offloading algorithm for blockchain-enabled IoT-edge-cloud orchestrated computing. IEEE Internet Things J. 8(4), 2163–2176 (2021). https://doi.org/10.1109/JIOT.2020.3033521

    Article  Google Scholar 

  24. Xu, J., Chen, L., Zhou, P.: Joint service caching and task offloading for mobile edge computing in dense networks. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 207–215. IEEE (2018)

    Google Scholar 

  25. Zhang, Q., Gui, L., Zhu, S., Lang, X.: Task offloading and resource scheduling in hybrid edge-cloud networks. IEEE Access 9, 85350–85366 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the Veer Surendra Sai University of Technology, Burla, National Institute of Technology, Warangal and Kalinga Institute of Industrial Technology, Bhubaneswar, for providing a conducive research environment and access to laboratory facilities that greatly facilitated the progress of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjaya Kumar Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neha, B., Panda, S.K., Sahu, P.K. (2025). Osmotic Computing-Based Task Offloading: A Fuzzy Logic-Based Approach. In: Chaubey, N., Jhanjhi, N.Z., Thampi, S.M., Parikh, S., Amin, K. (eds) Computing Science, Communication and Security. COMS2 2024. Communications in Computer and Information Science, vol 2174. Springer, Cham. https://doi.org/10.1007/978-3-031-75170-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75170-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75169-1

  • Online ISBN: 978-3-031-75170-7

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics