Abstract
Anatomical shape analysis is pivotal in clinical research and hypothesis testing, where the relationship between form and function is paramount. Correspondence-based statistical shape modeling (SSM) facilitates population-level morphometrics but requires a cumbersome, potentially bias-inducing construction pipeline. Traditional construction pipelines require manual and computationally expensive steps, hindering their widespread use. Furthermore, such methods utilize templates or assumptions (e.g.,linearity) that can bias or limit the expressivity of the variation captured by the constructed SSM. Recent advancements in deep learning have streamlined this process in inference by providing SSM prediction directly from unsegmented medical images. However, the proposed approaches are fully supervised and require utilizing a traditional SSM construction pipeline to create training data, thus inheriting the associated burdens and limitations. To address these challenges, we introduce a weakly supervised deep learning approach to predict SSM from images using point cloud supervision. Specifically, we propose reducing the supervision associated with the state-of-the-art fully Bayesian variational information bottleneck DeepSSM (BVIB-DeepSSM) model. BVIB-DeepSSM is an effective, principled framework for predicting probabilistic anatomical shapes from images with quantification of both aleatoric and epistemic uncertainties. Whereas the original BVIB-DeepSSM method requires strong supervision in the form of ground truth correspondence points, the proposed approach utilizes weak supervision via point cloud surface representations, which are more readily obtainable. Furthermore, the proposed approach learns correspondence in a completely data-driven manner without prior assumptions about the expected variability in shape cohort. Our experiments demonstrate that this approach yields similar accuracy and uncertainty estimation to the fully supervised scenario while substantially enhancing the feasibility of model training for SSM construction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adams, J., Bhalodia, R., Elhabian, S.: Uncertain-DeepSSM: from images to probabilistic shape models. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds.) ShapeMI 2020. LNCS, vol. 12474, pp. 57–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61056-2_5
Adams, J., Elhabian, S.: From images to probabilistic anatomical shapes: a deep variational bottleneck approach. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 474–484. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_46
Adams, J., Elhabian, S.: Point2ssm: learning morphological variations of anatomies from point cloud. arXiv preprint arXiv:2305.14486 (2023)
Adams, J., Elhabian, S.Y.: Benchmarking scalable epistemic uncertainty quantification in organ segmentation. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds.) UNSURE 2023. LNCS, vol. 14291, pp. 53–63. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44336-7_6
Adams, J., Elhabian, S.Y.: Can point cloud networks learn statistical shape models of anatomies? In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14220, pp. 486–496. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_47
Adams, J., Elhabian, S.Y.: Fully Bayesian Vib-Deepssm. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14222, pp. 346–356. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43898-1_34
Aldieri, A., et al.: Improving the hip fracture risk prediction with a statistical shape-and-intensity model of the proximal femur. Ann. Biomed. Eng. 50(2), 211–221 (2022)
Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. arXiv preprint arXiv:1612.00410 (2016)
Alemi, A.A., Morningstar, W.R., Poole, B., Fischer, I., Dillon, J.V.: Vib is half Bayes. In: Third Symposium on Advances in Approximate Bayesian Inference (2020)
Ambellan, F., Lamecker, H., von Tycowicz, C., Zachow, S.: Statistical shape models: understanding and mastering variation in anatomy. In: Rea, P.M. (ed.) Biomedical Visualisation. AEMB, vol. 1156, pp. 67–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19385-0_5
Bhalodia, R., Elhabian, S., Adams, J., Tao, W., Kavan, L., Whitaker, R.: DeepSSM: a blueprint for image-to-shape deep learning models. Med. Image Anal. 91, 103034 (2024)
Bhalodia, R., Elhabian, S.Y., Kavan, L., Whitaker, R.T.: DeepSSM: a deep learning framework for statistical shape modeling from raw images. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 244–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_23
Cates, J., Elhabian, S., Whitaker, R.: Shapeworks: particle-based shape correspondence and visualization software. In: Statistical Shape and Deformation Analysis, pp. 257–298. Elsevier (2017)
Cates, J., Fletcher, P.T., Styner, M., Shenton, M., Whitaker, R.: Shape modeling and analysis with entropy-based particle systems. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 333–345. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73273-0_28
Cootes, T.F., Twining, C.J., Taylor, C.J.: Diffeomorphic statistical shape models. In: BMVC, pp. 1–10. Citeseer (2004)
Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A minimum description length approach to statistical shape modeling. IEEE Trans. Med. Imaging 21(5), 525–537 (2002)
Fei, B., et al.: Comprehensive review of deep learning-based 3D point cloud completion processing and analysis. IEEE Trans. Intell. Transp. Syst. (2022)
Gal, Y., Hron, J., Kendall, A.: Concrete dropout. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9, pp. 249–256. PMLR (2010)
Goparaju, A., et al.: Benchmarking off-the-shelf statistical shape modeling tools in clinical applications. Med. Image Anal. 76, 102271 (2022)
Haq, R., Schmid, J., Borgie, R., Cates, J., Audette, M.A.: Deformable multisurface segmentation of the spine for orthopedic surgery planning and simulation. J. Med. Imaging 7(1), 015002–015002 (2020)
Hassan, M.K., et al.: An automatic framework to create patient-specific eye models from 3d magnetic resonance images for treatment selection in patients with uveal melanoma. Adv. Radiat. Oncol. 6(6), 100697 (2021)
Iyer, K., Adams, J., Elhabian, S.Y.: Scorp: statistics-informed dense correspondence prediction directly from unsegmented medical images. arXiv preprint arXiv:2404.17967 (2024)
Iyer, K., Elhabian, S.Y.: Mesh2ssm: from surface meshes to statistical shape models of anatomy. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14220, pp. 615–625. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_59
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2014)
Lang, I., Ginzburg, D., Avidan, S., Raviv, D.: DPC: unsupervised deep point correspondence via cross and self construction. In: 2021 International Conference on 3D Vision (3DV), pp. 1442–1451. IEEE (2021)
Ma, J., et al.: Abdomenct-1k: is abdominal organ segmentation a solved problem? IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6695–6714 (2022). https://doi.org/10.1109/TPAMI.2021.3100536
Miller, M.I., Younes, L., Trouvé, A.: Diffeomorphometry and geodesic positioning systems for human anatomy. Technology 2(01), 36–43 (2014)
Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 696–710 (1997)
Munsell, B.C., Dalal, P., Wang, S.: Evaluating shape correspondence for statistical shape analysis: a benchmark study. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 2023–2039 (2008)
Nain, D., et al.: Statistical shape analysis of brain structures using spherical wavelets. In: 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 209–212. IEEE (2007)
Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graphics (ToG) 31(4), 1–11 (2012)
Seitzer, M., Tavakoli, A., Antic, D., Martius, G.: On the pitfalls of heteroscedastic uncertainty estimation with probabilistic neural networks. In: International Conference on Learning Representations (2021)
Styner, M., et al.: Framework for the statistical shape analysis of brain structures using spharm-pdm. Insight J. 242 (2006)
Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. arXiv preprint physics/0004057 (2000)
Tóthová, K., et al.: Uncertainty quantification in CNN-based surface prediction using shape priors. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 300–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_28
Wen, Y., Tran, D., Ba, J.: Batchensemble: an alternative approach to efficient ensemble and lifelong learning. In: International Conference on Learning Representations (2020)
Xu, H., Chen, W., Lai, J., Li, Z., Zhao, Y., Pei, D.: On the necessity and effectiveness of learning the prior of variational auto-encoder. arXiv preprint arXiv:1905.13452 (2019)
Acknowledgements
This work was supported by the National Institutes of Health under grant numbers NIBIB-U24EB029011, NIAMS-R01AR076120, NHLBI-R01HL135568, and NIBIB-R01EB016701. We thank the University of Utah Division of Cardiovascular Medicine for providing left atrium MRI scans and segmentations from the Atrial Fibrillation projects and the ShapeWorks team.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Adams, J., Iyer, K., Y. Elhabian, S. (2025). Weakly Supervised Bayesian Shape Modeling from Unsegmented Medical Images. In: Wachinger, C., Paniagua, B., Elhabian, S., Luijten, G., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2024. Lecture Notes in Computer Science, vol 15275. Springer, Cham. https://doi.org/10.1007/978-3-031-75291-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-75291-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75290-2
Online ISBN: 978-3-031-75291-9
eBook Packages: Computer ScienceComputer Science (R0)