Skip to main content

Weakly Supervised Bayesian Shape Modeling from Unsegmented Medical Images

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15275))

Included in the following conference series:

  • 52 Accesses

Abstract

Anatomical shape analysis is pivotal in clinical research and hypothesis testing, where the relationship between form and function is paramount. Correspondence-based statistical shape modeling (SSM) facilitates population-level morphometrics but requires a cumbersome, potentially bias-inducing construction pipeline. Traditional construction pipelines require manual and computationally expensive steps, hindering their widespread use. Furthermore, such methods utilize templates or assumptions (e.g.,linearity) that can bias or limit the expressivity of the variation captured by the constructed SSM. Recent advancements in deep learning have streamlined this process in inference by providing SSM prediction directly from unsegmented medical images. However, the proposed approaches are fully supervised and require utilizing a traditional SSM construction pipeline to create training data, thus inheriting the associated burdens and limitations. To address these challenges, we introduce a weakly supervised deep learning approach to predict SSM from images using point cloud supervision. Specifically, we propose reducing the supervision associated with the state-of-the-art fully Bayesian variational information bottleneck DeepSSM (BVIB-DeepSSM) model. BVIB-DeepSSM is an effective, principled framework for predicting probabilistic anatomical shapes from images with quantification of both aleatoric and epistemic uncertainties. Whereas the original BVIB-DeepSSM method requires strong supervision in the form of ground truth correspondence points, the proposed approach utilizes weak supervision via point cloud surface representations, which are more readily obtainable. Furthermore, the proposed approach learns correspondence in a completely data-driven manner without prior assumptions about the expected variability in shape cohort. Our experiments demonstrate that this approach yields similar accuracy and uncertainty estimation to the fully supervised scenario while substantially enhancing the feasibility of model training for SSM construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, J., Bhalodia, R., Elhabian, S.: Uncertain-DeepSSM: from images to probabilistic shape models. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds.) ShapeMI 2020. LNCS, vol. 12474, pp. 57–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61056-2_5

    Chapter  Google Scholar 

  2. Adams, J., Elhabian, S.: From images to probabilistic anatomical shapes: a deep variational bottleneck approach. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13432, pp. 474–484. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_46

    Chapter  Google Scholar 

  3. Adams, J., Elhabian, S.: Point2ssm: learning morphological variations of anatomies from point cloud. arXiv preprint arXiv:2305.14486 (2023)

  4. Adams, J., Elhabian, S.Y.: Benchmarking scalable epistemic uncertainty quantification in organ segmentation. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds.) UNSURE 2023. LNCS, vol. 14291, pp. 53–63. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44336-7_6

    Chapter  Google Scholar 

  5. Adams, J., Elhabian, S.Y.: Can point cloud networks learn statistical shape models of anatomies? In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14220, pp. 486–496. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_47

    Chapter  Google Scholar 

  6. Adams, J., Elhabian, S.Y.: Fully Bayesian Vib-Deepssm. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14222, pp. 346–356. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43898-1_34

    Chapter  Google Scholar 

  7. Aldieri, A., et al.: Improving the hip fracture risk prediction with a statistical shape-and-intensity model of the proximal femur. Ann. Biomed. Eng. 50(2), 211–221 (2022)

    Article  Google Scholar 

  8. Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. arXiv preprint arXiv:1612.00410 (2016)

  9. Alemi, A.A., Morningstar, W.R., Poole, B., Fischer, I., Dillon, J.V.: Vib is half Bayes. In: Third Symposium on Advances in Approximate Bayesian Inference (2020)

    Google Scholar 

  10. Ambellan, F., Lamecker, H., von Tycowicz, C., Zachow, S.: Statistical shape models: understanding and mastering variation in anatomy. In: Rea, P.M. (ed.) Biomedical Visualisation. AEMB, vol. 1156, pp. 67–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19385-0_5

    Chapter  Google Scholar 

  11. Bhalodia, R., Elhabian, S., Adams, J., Tao, W., Kavan, L., Whitaker, R.: DeepSSM: a blueprint for image-to-shape deep learning models. Med. Image Anal. 91, 103034 (2024)

    Article  Google Scholar 

  12. Bhalodia, R., Elhabian, S.Y., Kavan, L., Whitaker, R.T.: DeepSSM: a deep learning framework for statistical shape modeling from raw images. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 244–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_23

    Chapter  Google Scholar 

  13. Cates, J., Elhabian, S., Whitaker, R.: Shapeworks: particle-based shape correspondence and visualization software. In: Statistical Shape and Deformation Analysis, pp. 257–298. Elsevier (2017)

    Google Scholar 

  14. Cates, J., Fletcher, P.T., Styner, M., Shenton, M., Whitaker, R.: Shape modeling and analysis with entropy-based particle systems. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 333–345. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73273-0_28

    Chapter  Google Scholar 

  15. Cootes, T.F., Twining, C.J., Taylor, C.J.: Diffeomorphic statistical shape models. In: BMVC, pp. 1–10. Citeseer (2004)

    Google Scholar 

  16. Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A minimum description length approach to statistical shape modeling. IEEE Trans. Med. Imaging 21(5), 525–537 (2002)

    Article  Google Scholar 

  17. Fei, B., et al.: Comprehensive review of deep learning-based 3D point cloud completion processing and analysis. IEEE Trans. Intell. Transp. Syst. (2022)

    Google Scholar 

  18. Gal, Y., Hron, J., Kendall, A.: Concrete dropout. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  19. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9, pp. 249–256. PMLR (2010)

    Google Scholar 

  20. Goparaju, A., et al.: Benchmarking off-the-shelf statistical shape modeling tools in clinical applications. Med. Image Anal. 76, 102271 (2022)

    Article  Google Scholar 

  21. Haq, R., Schmid, J., Borgie, R., Cates, J., Audette, M.A.: Deformable multisurface segmentation of the spine for orthopedic surgery planning and simulation. J. Med. Imaging 7(1), 015002–015002 (2020)

    Article  Google Scholar 

  22. Hassan, M.K., et al.: An automatic framework to create patient-specific eye models from 3d magnetic resonance images for treatment selection in patients with uveal melanoma. Adv. Radiat. Oncol. 6(6), 100697 (2021)

    Article  Google Scholar 

  23. Iyer, K., Adams, J., Elhabian, S.Y.: Scorp: statistics-informed dense correspondence prediction directly from unsegmented medical images. arXiv preprint arXiv:2404.17967 (2024)

  24. Iyer, K., Elhabian, S.Y.: Mesh2ssm: from surface meshes to statistical shape models of anatomy. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14220, pp. 615–625. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_59

    Chapter  Google Scholar 

  25. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2014)

    Google Scholar 

  26. Lang, I., Ginzburg, D., Avidan, S., Raviv, D.: DPC: unsupervised deep point correspondence via cross and self construction. In: 2021 International Conference on 3D Vision (3DV), pp. 1442–1451. IEEE (2021)

    Google Scholar 

  27. Ma, J., et al.: Abdomenct-1k: is abdominal organ segmentation a solved problem? IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6695–6714 (2022). https://doi.org/10.1109/TPAMI.2021.3100536

    Article  Google Scholar 

  28. Miller, M.I., Younes, L., Trouvé, A.: Diffeomorphometry and geodesic positioning systems for human anatomy. Technology 2(01), 36–43 (2014)

    Article  Google Scholar 

  29. Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 696–710 (1997)

    Article  Google Scholar 

  30. Munsell, B.C., Dalal, P., Wang, S.: Evaluating shape correspondence for statistical shape analysis: a benchmark study. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 2023–2039 (2008)

    Article  Google Scholar 

  31. Nain, D., et al.: Statistical shape analysis of brain structures using spherical wavelets. In: 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 209–212. IEEE (2007)

    Google Scholar 

  32. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graphics (ToG) 31(4), 1–11 (2012)

    Article  Google Scholar 

  33. Seitzer, M., Tavakoli, A., Antic, D., Martius, G.: On the pitfalls of heteroscedastic uncertainty estimation with probabilistic neural networks. In: International Conference on Learning Representations (2021)

    Google Scholar 

  34. Styner, M., et al.: Framework for the statistical shape analysis of brain structures using spharm-pdm. Insight J. 242 (2006)

    Google Scholar 

  35. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. arXiv preprint physics/0004057 (2000)

    Google Scholar 

  36. Tóthová, K., et al.: Uncertainty quantification in CNN-based surface prediction using shape priors. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 300–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_28

    Chapter  Google Scholar 

  37. Wen, Y., Tran, D., Ba, J.: Batchensemble: an alternative approach to efficient ensemble and lifelong learning. In: International Conference on Learning Representations (2020)

    Google Scholar 

  38. Xu, H., Chen, W., Lai, J., Li, Z., Zhao, Y., Pei, D.: On the necessity and effectiveness of learning the prior of variational auto-encoder. arXiv preprint arXiv:1905.13452 (2019)

Download references

Acknowledgements

This work was supported by the National Institutes of Health under grant numbers NIBIB-U24EB029011, NIAMS-R01AR076120, NHLBI-R01HL135568, and NIBIB-R01EB016701. We thank the University of Utah Division of Cardiovascular Medicine for providing left atrium MRI scans and segmentations from the Atrial Fibrillation projects and the ShapeWorks team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadie Adams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adams, J., Iyer, K., Y. Elhabian, S. (2025). Weakly Supervised Bayesian Shape Modeling from Unsegmented Medical Images. In: Wachinger, C., Paniagua, B., Elhabian, S., Luijten, G., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2024. Lecture Notes in Computer Science, vol 15275. Springer, Cham. https://doi.org/10.1007/978-3-031-75291-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75291-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75290-2

  • Online ISBN: 978-3-031-75291-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics